#TITLE_ALTERNATIVE#

In the literature, different methods to obtain robust estimate of location and covariance matrix are available. One of the most popular and widely used is the so-called fast minimum covariance determinant (FMCD). However, it is computationally not efficient when the number of variables is large beca...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: TISHA DESTRIA (NIM: 10104034), RATU
التنسيق: Final Project
اللغة:Indonesia
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/11221
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In the literature, different methods to obtain robust estimate of location and covariance matrix are available. One of the most popular and widely used is the so-called fast minimum covariance determinant (FMCD). However, it is computationally not efficient when the number of variables is large because it depends on the computation of the determinant and inverse of covariance matrix. To handle this obstacle, in this final project a study literature on FMCD and a simulation experiment on RH method proposed by our supervisor will be presented. Simulation result shows that RH method is more efficient than FMCD. <br /> <br />