PERBANDINGAN ESTIMATOR CENSORED LEAST ABSOLUTE DEVIATIONS (CLAD) DAN SYMMETRICALLY CENSORED LEAST SQUARES (SCLS) UNTUK MODEL REGRESI TOBIT (Studi Kasus : Analisis Faktor-Faktor yang Mempengaruhi Partisipasi Perempuan dalam Perekonomian Rumah Tangga di Provinsi Daerah Istimewa Yogyakarta)

This graduating paper discusses alternatives for maximum likelihood estimation of the censored regression or censored �Tobit� model. There are two alternative methods that will be discusses and compared: Censored Least Absolute Deviations (CLAD) and Symmetrically Censored Least Absolute Deviatio...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: , VANIA PRIMA AMELINDA, , Prof. Subanar, Ph.D
التنسيق: Theses and Dissertations NonPeerReviewed
منشور في: [Yogyakarta] : Universitas Gadjah Mada 2014
الموضوعات:
ETD
الوصول للمادة أونلاين:https://repository.ugm.ac.id/132176/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72696
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This graduating paper discusses alternatives for maximum likelihood estimation of the censored regression or censored â��Tobitâ�� model. There are two alternative methods that will be discusses and compared: Censored Least Absolute Deviations (CLAD) and Symmetrically Censored Least Absolute Deviations (SCLS). Unlike maximum likelihood estimator, CLAD is consistent and asymptotically normal for a wide class of error distributions and robust to heterokedasticity. Meanwhile, SCLS is not completely general, since it is based upon the assumption of symmetrically (and independently) distributed error terms. However this estimator will be consistent even though the residuals are not identically distributed and remain robust to heterokedasticity data. In this case study, the researcher use National Labor Force Survey Data 2013 to examine factors that influence womenâ��s participant in domestic economy of Yogyakarta province.