Performance Evaluation of Regular Decomposition and Benchmark Clustering Methods
This study compares three benchmark clustering methods—mini batch k-means, DBSCAN, and spectral clustering—with regular decomposition (RD), a new method developed for large graph data. RD is first converted so that applicable to numerical data without graph structure by changing the input into a dis...
Saved in:
Main Authors: | Haryo, Laura, Pulungan, Reza |
---|---|
格式: | Other NonPeerReviewed |
出版: |
Communications in Computer and Information Science
2022
|
主題: | |
在線閱讀: | https://repository.ugm.ac.id/284263/ https://link.springer.com/chapter/10.1007/978-981-19-8069-5_12 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Universitas Gadjah Mada |
相似書籍
-
Rainfall Analysis in Semarang City Using K-Means and Agglomerative Hierarchical Clustering Methods
由: Sudarno, Prabowo Wahyu, et al.
出版: (2022) -
Real-Time Forest Fire Detection Framework Based on Artificial
Intelligence Using Color Probability Model and Motion
Feature Analysis
由: Wahyono, Wahyono, et al.
出版: (2022) -
Periapical Radiograph Texture Features for Osteoporosis Detection using Deep Convolutional Neural Network
由: Hidjah, Khasnur, et al.
出版: (2022) -
SlimMe, a Chatbot With Artificial Empathy for Personal Weight Management: System Design and Finding
由: Rahmanti, Annisa Ristya, et al.
出版: (2022) -
A Preliminary Learner Assessment Framework
on E-Learning
由: Yuniarti, Wenty Dwi, et al.
出版: (2022)