Eigenstructure-based angle for detecting outliers in multivariate data

There are two main reasons that motivate people to detect outliers; the first is the researchers’ intention; see the example of Mr Haldum’s cases in Barnett and Lewis. The second is the effect of outliers on analyses. This article does not differentiate between the various justifications for outlier...

Full description

Saved in:
Bibliographic Details
Main Author: Nazrina Aziz
Format: Article
Language:English
Published: Universiti Kebangsaan Malaysia 2014
Online Access:http://journalarticle.ukm.my/8160/1/21_Nazrina.pdf
http://journalarticle.ukm.my/8160/
http://www.ukm.my/jsm/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Kebangsaan Malaysia
Language: English
id my-ukm.journal.8160
record_format eprints
spelling my-ukm.journal.81602016-12-14T06:46:24Z http://journalarticle.ukm.my/8160/ Eigenstructure-based angle for detecting outliers in multivariate data Nazrina Aziz, There are two main reasons that motivate people to detect outliers; the first is the researchers’ intention; see the example of Mr Haldum’s cases in Barnett and Lewis. The second is the effect of outliers on analyses. This article does not differentiate between the various justifications for outlier detection. The aim was to advise the analyst about observations that are isolated from the other observations in the data set. In this article, we introduce the eigenstructure based angle for outlier detection. This method is simple and effective in dealing with masking and swamping problems. The method proposed is illustrated and compared with Mahalanobis distance by using several data sets. Universiti Kebangsaan Malaysia 2014-12 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/8160/1/21_Nazrina.pdf Nazrina Aziz, (2014) Eigenstructure-based angle for detecting outliers in multivariate data. Sains Malaysiana, 43 (12). pp. 1973-1977. ISSN 0126-6039 http://www.ukm.my/jsm/
institution Universiti Kebangsaan Malaysia
building Perpustakaan Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description There are two main reasons that motivate people to detect outliers; the first is the researchers’ intention; see the example of Mr Haldum’s cases in Barnett and Lewis. The second is the effect of outliers on analyses. This article does not differentiate between the various justifications for outlier detection. The aim was to advise the analyst about observations that are isolated from the other observations in the data set. In this article, we introduce the eigenstructure based angle for outlier detection. This method is simple and effective in dealing with masking and swamping problems. The method proposed is illustrated and compared with Mahalanobis distance by using several data sets.
format Article
author Nazrina Aziz,
spellingShingle Nazrina Aziz,
Eigenstructure-based angle for detecting outliers in multivariate data
author_facet Nazrina Aziz,
author_sort Nazrina Aziz,
title Eigenstructure-based angle for detecting outliers in multivariate data
title_short Eigenstructure-based angle for detecting outliers in multivariate data
title_full Eigenstructure-based angle for detecting outliers in multivariate data
title_fullStr Eigenstructure-based angle for detecting outliers in multivariate data
title_full_unstemmed Eigenstructure-based angle for detecting outliers in multivariate data
title_sort eigenstructure-based angle for detecting outliers in multivariate data
publisher Universiti Kebangsaan Malaysia
publishDate 2014
url http://journalarticle.ukm.my/8160/1/21_Nazrina.pdf
http://journalarticle.ukm.my/8160/
http://www.ukm.my/jsm/
_version_ 1643737379273441280