Color recognition wearable device using machine learning for visually impaired person

Recognizing colors is a concerning problem for the visually impaired person. The aim of this paper is to convert colors to sound and vibration in order to allow fully/partially blind people to have a ‘feeling’ or better understanding of the different colors around them. The idea is to develop a devi...

Full description

Saved in:
Bibliographic Details
Main Authors: Bolad, Tarek Mohamed, Nik Hashim, Nik Nur Wahidah, Mohamad Hanif, Noor Hazrin Hany
Format: Article
Language:English
English
English
Published: Kulliyyah of Engineering, International Islamic University Malaysia 2018
Subjects:
Online Access:http://irep.iium.edu.my/57806/1/57806_COLOR%20RECOGNITION%20WEARABLE%20DEVICE.pdf
http://irep.iium.edu.my/57806/7/57806_Color%20recognition%20wearable%20device%20using%20machine%20learning%20for%20visualy%20impaired%20person_SCOPUS.pdf
http://irep.iium.edu.my/57806/13/57806%20COLOR%20RECOGNITION%20WEARABLE%20DEVICE%20USING%20WOS.pdf
http://irep.iium.edu.my/57806/
http://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/945
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
English
English
id my.iium.irep.57806
record_format dspace
spelling my.iium.irep.578062019-07-12T02:04:43Z http://irep.iium.edu.my/57806/ Color recognition wearable device using machine learning for visually impaired person Bolad, Tarek Mohamed Nik Hashim, Nik Nur Wahidah Mohamad Hanif, Noor Hazrin Hany TJ Mechanical engineering and machinery Recognizing colors is a concerning problem for the visually impaired person. The aim of this paper is to convert colors to sound and vibration in order to allow fully/partially blind people to have a ‘feeling’ or better understanding of the different colors around them. The idea is to develop a device that can produce vibration for colors. The user can also hear the name of the color along with ‘feeling’ the vibration. Two algorithms were used to distinguish between colors; RGB to HSV color conversion in comparison with neural network and decision tree based machine learning algorithms. Raspberry Pi 3 with Open Source Computer Vision (OpenCV) software handles the image processing. The results for RGB to HSV color conversion algorithm were performed with 3 different colors (red, blue, and green). In addition, neural network and decision tree algorithms were trained and tested with eight colors (red, green, blue, orange, yellow, purple, white, and black) for the conversion to sound and vibration. Neural network and decision tree algorithms achieved higher accuracy and efficiency for the majority of tested colors as compared to the RGB to HSV. *********************************************************** Membezakan antara warna adalah masalah yang merunsingkan terutamanya kepada mereka yang buta, separa buta atau buta warna. Tujuan kertas penyelidikan ini adalah untuk membentangkan kaedah menukar warna kepada bunyi dan getaran bagi membolehkan individu yang buta, separa buta atau buta warna untuk mendapat ‘perasaan’ atau pemahaman yang lebih baik tentang warna-warna yang berbeza disekeliling mereka. Idea yang dicadangkan adalah dengan membuat sebuah alat yang dapat menghasilkan getaran bagi setiap warna yang berbeza. Disamping itu, pengguna juga dapat mendengar nama warna tersebut. Algoritma yang digunakan untuk membezakan antara warna adalah penukaran warna RGB kepada HSV yang dibandingkan dengan rangkaian neural dan algoritma pembelajaran mesin berasaskan pokok keputusan. Raspberry Pi 3 bersaiz kad kredit dengan perisian Open Source Computer Vision (OpenCV) mengendalikan pemprosesan imej. Hasil algoritma penukaran warna RGB kepada HSV telah dilakukan dengan tiga warna yang berbeza (merah, biru, dan hijau). Tambahan pula, hasil rangkaian neural dan algoritma berasaskan pokok keputusan telah dilakukan dengan lapan warna (merah, hijau, biru, oren, kuning, ungu, putih, dan hitam) dengan penukaran warna tersebut kepada bunyi dan getaran. Selain itu, hasil rangkaian neural dan algoritma berasaskan pokok keputusan mencapai hasil dapatan yang baik dengan ketepatan dan kecekapan yang tinggi bagi kebanyakan warna yang diuji berbanding RGB kepada HSV. Kulliyyah of Engineering, International Islamic University Malaysia 2018-12-01 Article PeerReviewed application/pdf en http://irep.iium.edu.my/57806/1/57806_COLOR%20RECOGNITION%20WEARABLE%20DEVICE.pdf application/pdf en http://irep.iium.edu.my/57806/7/57806_Color%20recognition%20wearable%20device%20using%20machine%20learning%20for%20visualy%20impaired%20person_SCOPUS.pdf application/pdf en http://irep.iium.edu.my/57806/13/57806%20COLOR%20RECOGNITION%20WEARABLE%20DEVICE%20USING%20WOS.pdf Bolad, Tarek Mohamed and Nik Hashim, Nik Nur Wahidah and Mohamad Hanif, Noor Hazrin Hany (2018) Color recognition wearable device using machine learning for visually impaired person. IIUM Engineering Journal, 19 (2). pp. 213-220. ISSN 1511-788X http://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/945 10.31436/iiumej.v19i2.945
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Bolad, Tarek Mohamed
Nik Hashim, Nik Nur Wahidah
Mohamad Hanif, Noor Hazrin Hany
Color recognition wearable device using machine learning for visually impaired person
description Recognizing colors is a concerning problem for the visually impaired person. The aim of this paper is to convert colors to sound and vibration in order to allow fully/partially blind people to have a ‘feeling’ or better understanding of the different colors around them. The idea is to develop a device that can produce vibration for colors. The user can also hear the name of the color along with ‘feeling’ the vibration. Two algorithms were used to distinguish between colors; RGB to HSV color conversion in comparison with neural network and decision tree based machine learning algorithms. Raspberry Pi 3 with Open Source Computer Vision (OpenCV) software handles the image processing. The results for RGB to HSV color conversion algorithm were performed with 3 different colors (red, blue, and green). In addition, neural network and decision tree algorithms were trained and tested with eight colors (red, green, blue, orange, yellow, purple, white, and black) for the conversion to sound and vibration. Neural network and decision tree algorithms achieved higher accuracy and efficiency for the majority of tested colors as compared to the RGB to HSV. *********************************************************** Membezakan antara warna adalah masalah yang merunsingkan terutamanya kepada mereka yang buta, separa buta atau buta warna. Tujuan kertas penyelidikan ini adalah untuk membentangkan kaedah menukar warna kepada bunyi dan getaran bagi membolehkan individu yang buta, separa buta atau buta warna untuk mendapat ‘perasaan’ atau pemahaman yang lebih baik tentang warna-warna yang berbeza disekeliling mereka. Idea yang dicadangkan adalah dengan membuat sebuah alat yang dapat menghasilkan getaran bagi setiap warna yang berbeza. Disamping itu, pengguna juga dapat mendengar nama warna tersebut. Algoritma yang digunakan untuk membezakan antara warna adalah penukaran warna RGB kepada HSV yang dibandingkan dengan rangkaian neural dan algoritma pembelajaran mesin berasaskan pokok keputusan. Raspberry Pi 3 bersaiz kad kredit dengan perisian Open Source Computer Vision (OpenCV) mengendalikan pemprosesan imej. Hasil algoritma penukaran warna RGB kepada HSV telah dilakukan dengan tiga warna yang berbeza (merah, biru, dan hijau). Tambahan pula, hasil rangkaian neural dan algoritma berasaskan pokok keputusan telah dilakukan dengan lapan warna (merah, hijau, biru, oren, kuning, ungu, putih, dan hitam) dengan penukaran warna tersebut kepada bunyi dan getaran. Selain itu, hasil rangkaian neural dan algoritma berasaskan pokok keputusan mencapai hasil dapatan yang baik dengan ketepatan dan kecekapan yang tinggi bagi kebanyakan warna yang diuji berbanding RGB kepada HSV.
format Article
author Bolad, Tarek Mohamed
Nik Hashim, Nik Nur Wahidah
Mohamad Hanif, Noor Hazrin Hany
author_facet Bolad, Tarek Mohamed
Nik Hashim, Nik Nur Wahidah
Mohamad Hanif, Noor Hazrin Hany
author_sort Bolad, Tarek Mohamed
title Color recognition wearable device using machine learning for visually impaired person
title_short Color recognition wearable device using machine learning for visually impaired person
title_full Color recognition wearable device using machine learning for visually impaired person
title_fullStr Color recognition wearable device using machine learning for visually impaired person
title_full_unstemmed Color recognition wearable device using machine learning for visually impaired person
title_sort color recognition wearable device using machine learning for visually impaired person
publisher Kulliyyah of Engineering, International Islamic University Malaysia
publishDate 2018
url http://irep.iium.edu.my/57806/1/57806_COLOR%20RECOGNITION%20WEARABLE%20DEVICE.pdf
http://irep.iium.edu.my/57806/7/57806_Color%20recognition%20wearable%20device%20using%20machine%20learning%20for%20visualy%20impaired%20person_SCOPUS.pdf
http://irep.iium.edu.my/57806/13/57806%20COLOR%20RECOGNITION%20WEARABLE%20DEVICE%20USING%20WOS.pdf
http://irep.iium.edu.my/57806/
http://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/945
_version_ 1643619658164600832