Improved parameter estimation for MRF models for varying current
This paper introduces the improved parameter estimation of Magnetorheological fluid (MRF) damper models for varying input current. The models being studied for the estimation are Bingham model, Simple Bouc-Wen model, Modified Bouc-Wen model, Hyperbolic Tangent Function model, and Nonlinear Biviscous...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
American Scientific Publishers
2017
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/62923/1/62923_Improved%20parameter%20estimation%20for%20MRF_article.pdf http://irep.iium.edu.my/62923/2/62923_Improved%20parameter%20estimation%20for%20MRF_scopus.pdf http://irep.iium.edu.my/62923/ http://www.ingentaconnect.com/contentone/asp/asl/2017/00000023/00000011/art00124 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Islam Antarabangsa Malaysia |
Language: | English English |
id |
my.iium.irep.62923 |
---|---|
record_format |
dspace |
spelling |
my.iium.irep.629232018-05-07T04:09:57Z http://irep.iium.edu.my/62923/ Improved parameter estimation for MRF models for varying current M. Razali, M. Khusyaie Abdul Muthalif, Asan Gani Nordin, N. H.Diyana Abdul Hamid, Syamsul Bahrin TD Environmental technology. Sanitary engineering TJ Mechanical engineering and machinery This paper introduces the improved parameter estimation of Magnetorheological fluid (MRF) damper models for varying input current. The models being studied for the estimation are Bingham model, Simple Bouc-Wen model, Modified Bouc-Wen model, Hyperbolic Tangent Function model, and Nonlinear Biviscous model. In estimating the parameters of the models, a comparison between the simulation and the experimental results are made. The mathematical equations of each parameter are established as a function of the input current through curve fitting method. In order to optimize the estimation, the mathematical equations are divided into two range. It is found out that the model with the least value of parameter estimation error is Modified Bouc-Wen. American Scientific Publishers 2017-11 Article REM application/pdf en http://irep.iium.edu.my/62923/1/62923_Improved%20parameter%20estimation%20for%20MRF_article.pdf application/pdf en http://irep.iium.edu.my/62923/2/62923_Improved%20parameter%20estimation%20for%20MRF_scopus.pdf M. Razali, M. Khusyaie and Abdul Muthalif, Asan Gani and Nordin, N. H.Diyana and Abdul Hamid, Syamsul Bahrin (2017) Improved parameter estimation for MRF models for varying current. Advanced Science Letters, 23 (11). pp. 11002-11006. ISSN 1936-6612 http://www.ingentaconnect.com/contentone/asp/asl/2017/00000023/00000011/art00124 10.1166/asl.2017.10207 |
institution |
Universiti Islam Antarabangsa Malaysia |
building |
IIUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
International Islamic University Malaysia |
content_source |
IIUM Repository (IREP) |
url_provider |
http://irep.iium.edu.my/ |
language |
English English |
topic |
TD Environmental technology. Sanitary engineering TJ Mechanical engineering and machinery |
spellingShingle |
TD Environmental technology. Sanitary engineering TJ Mechanical engineering and machinery M. Razali, M. Khusyaie Abdul Muthalif, Asan Gani Nordin, N. H.Diyana Abdul Hamid, Syamsul Bahrin Improved parameter estimation for MRF models for varying current |
description |
This paper introduces the improved parameter estimation of Magnetorheological fluid (MRF) damper models for varying input current. The models being studied for the estimation are Bingham model, Simple Bouc-Wen model, Modified Bouc-Wen model, Hyperbolic Tangent Function model, and Nonlinear Biviscous model. In estimating the parameters of the models, a comparison between the simulation and the experimental results are made. The mathematical equations of each parameter are established as a function of the input current through curve fitting method. In order to optimize the estimation, the mathematical equations are divided into two range. It is found out that the model with the least value of parameter estimation error is Modified Bouc-Wen. |
format |
Article |
author |
M. Razali, M. Khusyaie Abdul Muthalif, Asan Gani Nordin, N. H.Diyana Abdul Hamid, Syamsul Bahrin |
author_facet |
M. Razali, M. Khusyaie Abdul Muthalif, Asan Gani Nordin, N. H.Diyana Abdul Hamid, Syamsul Bahrin |
author_sort |
M. Razali, M. Khusyaie |
title |
Improved parameter estimation for MRF models for varying current |
title_short |
Improved parameter estimation for MRF models for varying current |
title_full |
Improved parameter estimation for MRF models for varying current |
title_fullStr |
Improved parameter estimation for MRF models for varying current |
title_full_unstemmed |
Improved parameter estimation for MRF models for varying current |
title_sort |
improved parameter estimation for mrf models for varying current |
publisher |
American Scientific Publishers |
publishDate |
2017 |
url |
http://irep.iium.edu.my/62923/1/62923_Improved%20parameter%20estimation%20for%20MRF_article.pdf http://irep.iium.edu.my/62923/2/62923_Improved%20parameter%20estimation%20for%20MRF_scopus.pdf http://irep.iium.edu.my/62923/ http://www.ingentaconnect.com/contentone/asp/asl/2017/00000023/00000011/art00124 |
_version_ |
1643616269010731008 |