Improved parameter estimation for MRF models for varying current

This paper introduces the improved parameter estimation of Magnetorheological fluid (MRF) damper models for varying input current. The models being studied for the estimation are Bingham model, Simple Bouc-Wen model, Modified Bouc-Wen model, Hyperbolic Tangent Function model, and Nonlinear Biviscous...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Razali, M. Khusyaie, Abdul Muthalif, Asan Gani, Nordin, N. H.Diyana, Abdul Hamid, Syamsul Bahrin
Format: Article
Language:English
English
Published: American Scientific Publishers 2017
Subjects:
Online Access:http://irep.iium.edu.my/62923/1/62923_Improved%20parameter%20estimation%20for%20MRF_article.pdf
http://irep.iium.edu.my/62923/2/62923_Improved%20parameter%20estimation%20for%20MRF_scopus.pdf
http://irep.iium.edu.my/62923/
http://www.ingentaconnect.com/contentone/asp/asl/2017/00000023/00000011/art00124
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Islam Antarabangsa Malaysia
Language: English
English
id my.iium.irep.62923
record_format dspace
spelling my.iium.irep.629232018-05-07T04:09:57Z http://irep.iium.edu.my/62923/ Improved parameter estimation for MRF models for varying current M. Razali, M. Khusyaie Abdul Muthalif, Asan Gani Nordin, N. H.Diyana Abdul Hamid, Syamsul Bahrin TD Environmental technology. Sanitary engineering TJ Mechanical engineering and machinery This paper introduces the improved parameter estimation of Magnetorheological fluid (MRF) damper models for varying input current. The models being studied for the estimation are Bingham model, Simple Bouc-Wen model, Modified Bouc-Wen model, Hyperbolic Tangent Function model, and Nonlinear Biviscous model. In estimating the parameters of the models, a comparison between the simulation and the experimental results are made. The mathematical equations of each parameter are established as a function of the input current through curve fitting method. In order to optimize the estimation, the mathematical equations are divided into two range. It is found out that the model with the least value of parameter estimation error is Modified Bouc-Wen. American Scientific Publishers 2017-11 Article REM application/pdf en http://irep.iium.edu.my/62923/1/62923_Improved%20parameter%20estimation%20for%20MRF_article.pdf application/pdf en http://irep.iium.edu.my/62923/2/62923_Improved%20parameter%20estimation%20for%20MRF_scopus.pdf M. Razali, M. Khusyaie and Abdul Muthalif, Asan Gani and Nordin, N. H.Diyana and Abdul Hamid, Syamsul Bahrin (2017) Improved parameter estimation for MRF models for varying current. Advanced Science Letters, 23 (11). pp. 11002-11006. ISSN 1936-6612 http://www.ingentaconnect.com/contentone/asp/asl/2017/00000023/00000011/art00124 10.1166/asl.2017.10207
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
English
topic TD Environmental technology. Sanitary engineering
TJ Mechanical engineering and machinery
spellingShingle TD Environmental technology. Sanitary engineering
TJ Mechanical engineering and machinery
M. Razali, M. Khusyaie
Abdul Muthalif, Asan Gani
Nordin, N. H.Diyana
Abdul Hamid, Syamsul Bahrin
Improved parameter estimation for MRF models for varying current
description This paper introduces the improved parameter estimation of Magnetorheological fluid (MRF) damper models for varying input current. The models being studied for the estimation are Bingham model, Simple Bouc-Wen model, Modified Bouc-Wen model, Hyperbolic Tangent Function model, and Nonlinear Biviscous model. In estimating the parameters of the models, a comparison between the simulation and the experimental results are made. The mathematical equations of each parameter are established as a function of the input current through curve fitting method. In order to optimize the estimation, the mathematical equations are divided into two range. It is found out that the model with the least value of parameter estimation error is Modified Bouc-Wen.
format Article
author M. Razali, M. Khusyaie
Abdul Muthalif, Asan Gani
Nordin, N. H.Diyana
Abdul Hamid, Syamsul Bahrin
author_facet M. Razali, M. Khusyaie
Abdul Muthalif, Asan Gani
Nordin, N. H.Diyana
Abdul Hamid, Syamsul Bahrin
author_sort M. Razali, M. Khusyaie
title Improved parameter estimation for MRF models for varying current
title_short Improved parameter estimation for MRF models for varying current
title_full Improved parameter estimation for MRF models for varying current
title_fullStr Improved parameter estimation for MRF models for varying current
title_full_unstemmed Improved parameter estimation for MRF models for varying current
title_sort improved parameter estimation for mrf models for varying current
publisher American Scientific Publishers
publishDate 2017
url http://irep.iium.edu.my/62923/1/62923_Improved%20parameter%20estimation%20for%20MRF_article.pdf
http://irep.iium.edu.my/62923/2/62923_Improved%20parameter%20estimation%20for%20MRF_scopus.pdf
http://irep.iium.edu.my/62923/
http://www.ingentaconnect.com/contentone/asp/asl/2017/00000023/00000011/art00124
_version_ 1643616269010731008