Dichotomy of iterated means for nonlinear operators
In this paper, we discuss a dichotomy of iterated means of nonlinear operators acting on a compact convex subset of a finite-dimensional real Banach space. As an application, we study the mean ergodicity of nonhomogeneous Markov chains.
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English English English |
Published: |
Springer Nature
2018
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/64037/2/64037_Dichotomy%20of%20Iterated%20Means%20for%20Nonlinear%20Operators_scopus.pdf http://irep.iium.edu.my/64037/9/64037_Dichotomy%20of%20iterated%20means%20for%20nonlinear%20operators.pdf http://irep.iium.edu.my/64037/10/64037_Dichotomy%20of%20iterated%20means%20for%20nonlinear%20operators_WoS.pdf http://irep.iium.edu.my/64037/ https://link.springer.com/article/10.1007%2Fs10688-018-0212-9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Islam Antarabangsa Malaysia |
Language: | English English English |
id |
my.iium.irep.64037 |
---|---|
record_format |
dspace |
spelling |
my.iium.irep.640372018-08-01T08:17:59Z http://irep.iium.edu.my/64037/ Dichotomy of iterated means for nonlinear operators Saburov, Mansoor HT101 Urban groups. The city. Urban sociology QA Mathematics QA300 Analysis In this paper, we discuss a dichotomy of iterated means of nonlinear operators acting on a compact convex subset of a finite-dimensional real Banach space. As an application, we study the mean ergodicity of nonhomogeneous Markov chains. Springer Nature 2018-01-01 Article NonPeerReviewed application/pdf en http://irep.iium.edu.my/64037/2/64037_Dichotomy%20of%20Iterated%20Means%20for%20Nonlinear%20Operators_scopus.pdf application/pdf en http://irep.iium.edu.my/64037/9/64037_Dichotomy%20of%20iterated%20means%20for%20nonlinear%20operators.pdf application/pdf en http://irep.iium.edu.my/64037/10/64037_Dichotomy%20of%20iterated%20means%20for%20nonlinear%20operators_WoS.pdf Saburov, Mansoor (2018) Dichotomy of iterated means for nonlinear operators. Functional Analysis and its Applications, 52 (1). pp. 74-76. ISSN 0016-2663 https://link.springer.com/article/10.1007%2Fs10688-018-0212-9 10.1007/s10688-018-0212-9 |
institution |
Universiti Islam Antarabangsa Malaysia |
building |
IIUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
International Islamic University Malaysia |
content_source |
IIUM Repository (IREP) |
url_provider |
http://irep.iium.edu.my/ |
language |
English English English |
topic |
HT101 Urban groups. The city. Urban sociology QA Mathematics QA300 Analysis |
spellingShingle |
HT101 Urban groups. The city. Urban sociology QA Mathematics QA300 Analysis Saburov, Mansoor Dichotomy of iterated means for nonlinear operators |
description |
In this paper, we discuss a dichotomy of iterated means of nonlinear operators acting on a compact convex subset of a finite-dimensional real Banach space. As an application, we study the mean ergodicity of nonhomogeneous Markov chains. |
format |
Article |
author |
Saburov, Mansoor |
author_facet |
Saburov, Mansoor |
author_sort |
Saburov, Mansoor |
title |
Dichotomy of iterated means for nonlinear operators |
title_short |
Dichotomy of iterated means for nonlinear operators |
title_full |
Dichotomy of iterated means for nonlinear operators |
title_fullStr |
Dichotomy of iterated means for nonlinear operators |
title_full_unstemmed |
Dichotomy of iterated means for nonlinear operators |
title_sort |
dichotomy of iterated means for nonlinear operators |
publisher |
Springer Nature |
publishDate |
2018 |
url |
http://irep.iium.edu.my/64037/2/64037_Dichotomy%20of%20Iterated%20Means%20for%20Nonlinear%20Operators_scopus.pdf http://irep.iium.edu.my/64037/9/64037_Dichotomy%20of%20iterated%20means%20for%20nonlinear%20operators.pdf http://irep.iium.edu.my/64037/10/64037_Dichotomy%20of%20iterated%20means%20for%20nonlinear%20operators_WoS.pdf http://irep.iium.edu.my/64037/ https://link.springer.com/article/10.1007%2Fs10688-018-0212-9 |
_version_ |
1643617411402825728 |