On non-ergodic volterra cubic stochastic operators
Let Sm−1 be the simplex in Rm , and V:Sm−1→Sm−1 be a nonlinear mapping then this operator satisfies an ergodic theorem if the limit limn→∞1n∑k=1nVk(x) exists for every x∈Sm−1 . It is a well known fact that this ergodicity may fail for Volterra quadratic operators, so it is natural to char...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English English English |
Published: |
Springer
2019
|
Subjects: | |
Online Access: | http://irep.iium.edu.my/73972/1/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_article.pdf http://irep.iium.edu.my/73972/2/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_scopus.pdf http://irep.iium.edu.my/73972/3/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_wos.pdf http://irep.iium.edu.my/73972/ https://link.springer.com/article/10.1007/s12346-019-00334-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Islam Antarabangsa Malaysia |
Language: | English English English |
id |
my.iium.irep.73972 |
---|---|
record_format |
dspace |
spelling |
my.iium.irep.739722020-04-05T09:21:36Z http://irep.iium.edu.my/73972/ On non-ergodic volterra cubic stochastic operators Mukhamedov, Farrukh Pah, Chin Hee Rosli, Azizi QA Mathematics Let Sm−1 be the simplex in Rm , and V:Sm−1→Sm−1 be a nonlinear mapping then this operator satisfies an ergodic theorem if the limit limn→∞1n∑k=1nVk(x) exists for every x∈Sm−1 . It is a well known fact that this ergodicity may fail for Volterra quadratic operators, so it is natural to characterize all non-ergodic operators. However, there is an ongoing problem even in the low dimensional simplexes. In this paper, we solve the mentioned problem within Volterra cubic stochastic operators acting on two-dimensional simplex. Springer 2019 Article PeerReviewed application/pdf en http://irep.iium.edu.my/73972/1/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_article.pdf application/pdf en http://irep.iium.edu.my/73972/2/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_scopus.pdf application/pdf en http://irep.iium.edu.my/73972/3/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_wos.pdf Mukhamedov, Farrukh and Pah, Chin Hee and Rosli, Azizi (2019) On non-ergodic volterra cubic stochastic operators. Qualitative Theory of Dynamical Systems. ISSN 1575-5460 E-ISSN 1662-3592 (In Press) https://link.springer.com/article/10.1007/s12346-019-00334-8 10.1007/s12346-019-00334-8 |
institution |
Universiti Islam Antarabangsa Malaysia |
building |
IIUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
International Islamic University Malaysia |
content_source |
IIUM Repository (IREP) |
url_provider |
http://irep.iium.edu.my/ |
language |
English English English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Mukhamedov, Farrukh Pah, Chin Hee Rosli, Azizi On non-ergodic volterra cubic stochastic operators |
description |
Let Sm−1 be the simplex in Rm , and V:Sm−1→Sm−1 be a nonlinear mapping then this operator satisfies an ergodic theorem if the limit
limn→∞1n∑k=1nVk(x) exists for every x∈Sm−1 . It is a well known fact that this ergodicity may fail for Volterra quadratic operators, so it is natural to characterize all non-ergodic operators. However, there is an ongoing problem even in the low dimensional simplexes. In this paper, we solve the mentioned problem within Volterra cubic stochastic operators acting on two-dimensional simplex. |
format |
Article |
author |
Mukhamedov, Farrukh Pah, Chin Hee Rosli, Azizi |
author_facet |
Mukhamedov, Farrukh Pah, Chin Hee Rosli, Azizi |
author_sort |
Mukhamedov, Farrukh |
title |
On non-ergodic volterra cubic stochastic operators |
title_short |
On non-ergodic volterra cubic stochastic operators |
title_full |
On non-ergodic volterra cubic stochastic operators |
title_fullStr |
On non-ergodic volterra cubic stochastic operators |
title_full_unstemmed |
On non-ergodic volterra cubic stochastic operators |
title_sort |
on non-ergodic volterra cubic stochastic operators |
publisher |
Springer |
publishDate |
2019 |
url |
http://irep.iium.edu.my/73972/1/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_article.pdf http://irep.iium.edu.my/73972/2/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_scopus.pdf http://irep.iium.edu.my/73972/3/73972_On%20Non-ergodic%20Volterra%20Cubic%20Stochastic_wos.pdf http://irep.iium.edu.my/73972/ https://link.springer.com/article/10.1007/s12346-019-00334-8 |
_version_ |
1665894776561467392 |