A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab

The field of data analytics has become a significant catalyst for change in government operations, presenting unique possibilities for enhancing governance efficiency. The availability of vast amounts of data accessible to individuals responsible for making decisions presents an opportunity for extr...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd, Saifuddin, Ijab, Mohamad Taha
Format: Book Section
Language:English
Published: Faculty of Computer and Mathematical Sciences 2023
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/94365/1/94365.pdf
https://ir.uitm.edu.my/id/eprint/94365/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Mara
Language: English
id my.uitm.ir.94365
record_format eprints
spelling my.uitm.ir.943652024-05-02T03:19:04Z https://ir.uitm.edu.my/id/eprint/94365/ A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab Mohd, Saifuddin Ijab, Mohamad Taha Integer programming The field of data analytics has become a significant catalyst for change in government operations, presenting unique possibilities for enhancing governance efficiency. The availability of vast amounts of data accessible to individuals responsible for making decisions presents an opportunity for extracting valuable insights. However, effectively harnessing this potential requires the utilisation of advanced methodologies. Data analytics has the potential to greatly benefit procurement, which is a crucial aspect of government operations. By utilising data analytics, procurement can improve its efficiency, mitigate disputes, prevent instances of fraud and corruption, enhance transparency and accountability, and reduce both time and cost burdens. The significance of effective procurement management is underscored by Malaysia's budget allocation of RM388.1 billion for the year 2023. Insufficient monitoring of procurement procedures can give rise to fraudulent activities, corrupt practises, and suboptimal tenderer choices, thereby causing significant financial losses to government funds. A misdemeanor arrest of the government procurement cartel coalition in 2021, which involved a monopoly of 345 tenders in government ministries and agencies across the nation and a project value of RM3.8 billion is one illustration of the insufficient monitoring of the fraudulent cartel and coalition activities in government procurement process. In order to tackle these issues, this study introduces a novel framework that employs a machine learning model specifically developed to assist evaluation committees and tender board in detecting fraudulent company in the tenders and quotations. The framework demonstrates the capability to predict tenderers who possess a likelihood of engaging in fraudulent activities and forming cartel coalition with other tenderers. Comprehensive information pertaining to tenderers can be discerned, hence bolstering the evidentiary support for the presence of fraudulent alliances and cartels among tenderers. This framework additionally offers visual analytics that facilitates the awareness of committee members and tender boards regarding the potential danger of fraudulent activities by tenderers during the procurement process. The framework described in this study utilises historical and current datasets derived from Malaysia's eProcurement system that is known as ePerolehan that was exist since 1999. This framework effectively extracts patterns, identifies trends, and generates forecasts pertaining to fraudulent coalition and cartel activities among tenderers. To date, there is an absence of technologies available for the detection of fraudulent coalitions and cartels in the procurement process. By implementing this framework, it has the potential to mitigate financial losses and corrupt practises, hence fostering economic growth and enhancing transparency within a nation. Faculty of Computer and Mathematical Sciences 2023 Book Section NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/94365/1/94365.pdf A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab. (2023) In: International Jasin Multimedia & Computer Science Invention and Innovation Exhibition (i-JaMCSIIX 2023). Faculty of Computer and Mathematical Sciences, Kampus Jasin, pp. 106-109. ISBN 978-967-15337-0-3 (Submitted)
institution Universiti Teknologi Mara
building Tun Abdul Razak Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Mara
content_source UiTM Institutional Repository
url_provider http://ir.uitm.edu.my/
language English
topic Integer programming
spellingShingle Integer programming
Mohd, Saifuddin
Ijab, Mohamad Taha
A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab
description The field of data analytics has become a significant catalyst for change in government operations, presenting unique possibilities for enhancing governance efficiency. The availability of vast amounts of data accessible to individuals responsible for making decisions presents an opportunity for extracting valuable insights. However, effectively harnessing this potential requires the utilisation of advanced methodologies. Data analytics has the potential to greatly benefit procurement, which is a crucial aspect of government operations. By utilising data analytics, procurement can improve its efficiency, mitigate disputes, prevent instances of fraud and corruption, enhance transparency and accountability, and reduce both time and cost burdens. The significance of effective procurement management is underscored by Malaysia's budget allocation of RM388.1 billion for the year 2023. Insufficient monitoring of procurement procedures can give rise to fraudulent activities, corrupt practises, and suboptimal tenderer choices, thereby causing significant financial losses to government funds. A misdemeanor arrest of the government procurement cartel coalition in 2021, which involved a monopoly of 345 tenders in government ministries and agencies across the nation and a project value of RM3.8 billion is one illustration of the insufficient monitoring of the fraudulent cartel and coalition activities in government procurement process. In order to tackle these issues, this study introduces a novel framework that employs a machine learning model specifically developed to assist evaluation committees and tender board in detecting fraudulent company in the tenders and quotations. The framework demonstrates the capability to predict tenderers who possess a likelihood of engaging in fraudulent activities and forming cartel coalition with other tenderers. Comprehensive information pertaining to tenderers can be discerned, hence bolstering the evidentiary support for the presence of fraudulent alliances and cartels among tenderers. This framework additionally offers visual analytics that facilitates the awareness of committee members and tender boards regarding the potential danger of fraudulent activities by tenderers during the procurement process. The framework described in this study utilises historical and current datasets derived from Malaysia's eProcurement system that is known as ePerolehan that was exist since 1999. This framework effectively extracts patterns, identifies trends, and generates forecasts pertaining to fraudulent coalition and cartel activities among tenderers. To date, there is an absence of technologies available for the detection of fraudulent coalitions and cartels in the procurement process. By implementing this framework, it has the potential to mitigate financial losses and corrupt practises, hence fostering economic growth and enhancing transparency within a nation.
format Book Section
author Mohd, Saifuddin
Ijab, Mohamad Taha
author_facet Mohd, Saifuddin
Ijab, Mohamad Taha
author_sort Mohd, Saifuddin
title A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab
title_short A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab
title_full A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab
title_fullStr A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab
title_full_unstemmed A framework of procurement analytics for fraud coalition prediction / Saifuddin Mohd and Mohamad Taha Ijab
title_sort framework of procurement analytics for fraud coalition prediction / saifuddin mohd and mohamad taha ijab
publisher Faculty of Computer and Mathematical Sciences
publishDate 2023
url https://ir.uitm.edu.my/id/eprint/94365/1/94365.pdf
https://ir.uitm.edu.my/id/eprint/94365/
_version_ 1800100599724769280