Commuting maps on rank k triangular matrices
Let n >= 2 be an integer and let F be a field with vertical bar F vertical bar >= 3. Let T-n(F) be the ring of n x n upper triangular matrices over F with centre Z. Fixing an integer 2 <= k <= n,we prove thatan additive map psi: T-n (F) -> T-n(F) satisfies A psi (A) = psi(A)A for all...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Published: |
Taylor & Francis Ltd
2020
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/36699/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.36699 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.366992024-11-04T07:56:16Z http://eprints.um.edu.my/36699/ Commuting maps on rank k triangular matrices Chooi, Wai Leong Kwa, Kiam Heong Tan, Li Yin QA Mathematics Let n >= 2 be an integer and let F be a field with vertical bar F vertical bar >= 3. Let T-n(F) be the ring of n x n upper triangular matrices over F with centre Z. Fixing an integer 2 <= k <= n,we prove thatan additive map psi: T-n (F) -> T-n(F) satisfies A psi (A) = psi(A)A for all rank k matrices A is an element of T-n(F) if and only if there exist an additive map mu: T-n(F) -> Z, Z is an element of Z and alpha is an element of F in which alpha = 0 when vertical bar F vertical bar > 3 or k < n such that psi(A) = ZA + mu(A) alpha(a(11) + a(nn))E-1n for all A = (a(ij)) is an element of T-n(F). Here, E-1n is an element of T-n(F) is the matrix whose (1, n)th entry is one and zeros elsewhere. Taylor & Francis Ltd 2020-05 Article PeerReviewed Chooi, Wai Leong and Kwa, Kiam Heong and Tan, Li Yin (2020) Commuting maps on rank k triangular matrices. Linear & Multilinear Algebra, 68 (5). pp. 1021-1030. ISSN 03081087, DOI https://doi.org/10.1080/03081087.2018.1527281 <https://doi.org/10.1080/03081087.2018.1527281>. 10.1080/03081087.2018.1527281 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Chooi, Wai Leong Kwa, Kiam Heong Tan, Li Yin Commuting maps on rank k triangular matrices |
description |
Let n >= 2 be an integer and let F be a field with vertical bar F vertical bar >= 3. Let T-n(F) be the ring of n x n upper triangular matrices over F with centre Z. Fixing an integer 2 <= k <= n,we prove thatan additive map psi: T-n (F) -> T-n(F) satisfies A psi (A) = psi(A)A for all rank k matrices A is an element of T-n(F) if and only if there exist an additive map mu: T-n(F) -> Z, Z is an element of Z and alpha is an element of F in which alpha = 0 when vertical bar F vertical bar > 3 or k < n such that psi(A) = ZA + mu(A) alpha(a(11) + a(nn))E-1n for all A = (a(ij)) is an element of T-n(F). Here, E-1n is an element of T-n(F) is the matrix whose (1, n)th entry is one and zeros elsewhere. |
format |
Article |
author |
Chooi, Wai Leong Kwa, Kiam Heong Tan, Li Yin |
author_facet |
Chooi, Wai Leong Kwa, Kiam Heong Tan, Li Yin |
author_sort |
Chooi, Wai Leong |
title |
Commuting maps on rank k triangular matrices |
title_short |
Commuting maps on rank k triangular matrices |
title_full |
Commuting maps on rank k triangular matrices |
title_fullStr |
Commuting maps on rank k triangular matrices |
title_full_unstemmed |
Commuting maps on rank k triangular matrices |
title_sort |
commuting maps on rank k triangular matrices |
publisher |
Taylor & Francis Ltd |
publishDate |
2020 |
url |
http://eprints.um.edu.my/36699/ |
_version_ |
1814933260693667840 |