Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats
Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
MDPI
2022
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/41388/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
id |
my.um.eprints.41388 |
---|---|
record_format |
eprints |
spelling |
my.um.eprints.413882023-09-21T06:25:33Z http://eprints.um.edu.my/41388/ Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats Mustapha, Sagir Azemi, Ahmad Khusairi Ahmad, Wan Amir Nizam Wan Rasool, Aida Hanum Ghulam Mustafa, Mohd Rais Mokhtar, Siti Safiah QD Chemistry R Medicine Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague-Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the K-ATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the K-ATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the K-ATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes. MDPI 2022-08 Article PeerReviewed Mustapha, Sagir and Azemi, Ahmad Khusairi and Ahmad, Wan Amir Nizam Wan and Rasool, Aida Hanum Ghulam and Mustafa, Mohd Rais and Mokhtar, Siti Safiah (2022) Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats. Molecules, 27 (16). ISSN 1420-3049, DOI https://doi.org/10.3390/molecules27165107 <https://doi.org/10.3390/molecules27165107>. 10.3390/molecules27165107 |
institution |
Universiti Malaya |
building |
UM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaya |
content_source |
UM Research Repository |
url_provider |
http://eprints.um.edu.my/ |
topic |
QD Chemistry R Medicine |
spellingShingle |
QD Chemistry R Medicine Mustapha, Sagir Azemi, Ahmad Khusairi Ahmad, Wan Amir Nizam Wan Rasool, Aida Hanum Ghulam Mustafa, Mohd Rais Mokhtar, Siti Safiah Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats |
description |
Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague-Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the K-ATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the K-ATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the K-ATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes. |
format |
Article |
author |
Mustapha, Sagir Azemi, Ahmad Khusairi Ahmad, Wan Amir Nizam Wan Rasool, Aida Hanum Ghulam Mustafa, Mohd Rais Mokhtar, Siti Safiah |
author_facet |
Mustapha, Sagir Azemi, Ahmad Khusairi Ahmad, Wan Amir Nizam Wan Rasool, Aida Hanum Ghulam Mustafa, Mohd Rais Mokhtar, Siti Safiah |
author_sort |
Mustapha, Sagir |
title |
Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats |
title_short |
Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats |
title_full |
Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats |
title_fullStr |
Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats |
title_full_unstemmed |
Inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats |
title_sort |
inhibition of endoplasmic reticulum stress improves acetylcholine-mediated relaxation in the aorta of type-2 diabetic rats |
publisher |
MDPI |
publishDate |
2022 |
url |
http://eprints.um.edu.my/41388/ |
_version_ |
1778161665826619392 |