Groundwater level forecasting using ensemble coactive neuro-fuzzy inference system
A modeling framework utilizing the coactive neuro-fuzzy inference system (CANFIS) has been developed for multi-lead time groundwater level (GWL) forecasting in four different wells located in Texas and Florida, USA. Various model input combinations, including GWL, precipitation, temperature, and sur...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Elsevier
2024
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/44257/ https://doi.org/10.1016/j.scitotenv.2023.168760 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaya |
Summary: | A modeling framework utilizing the coactive neuro-fuzzy inference system (CANFIS) has been developed for multi-lead time groundwater level (GWL) forecasting in four different wells located in Texas and Florida, USA. Various model input combinations, including GWL, precipitation, temperature, and surface water level variables, have been derived based on proposed correlation analysis using singular spectrum analysis (SSA) remainders. The models have been trained on data subsets of varying lengths to identify the optimal training data duration. Additionally, we have introduced the bagging ensemble learning method to enhance the performance of the CANFIS model. As part of a comprehensive model evaluation process, the best-performing CANFIS model for each forecasting scenario has undergone uncertainty analysis using bootstrap sampling. Our results reveal that the CANFIS model performs satisfactorily for daily forecasting but leaves room for improvement in monthly forecasting, particularly for two-month and three-month ahead forecasts. Moreover, we have identified several optimal input combinations, highlighting the significance of the temperature variable in monthly forecasting. Furthermore, our findings indicate that additional training data does not necessarily lead to improved performance. The ensemble CANFIS model has demonstrated significant performance enhancement, particularly for monthly forecasting. Finally, the CANFIS model uncertainty analysis has shown satisfactory results for daily forecasting scenarios, while monthly forecasting models exhibit higher uncertainties, particularly during periods with distinctly different GWL fluctuation patterns. |
---|