Condition monitoring of deep drilling process for cooling channel making in hot press die

Deep drilling operation is one of the major process that is widely used in the manufacturing industry. To make a cooling channel of hot press forming die, deep drilling is a crucial process which is the drilling depth is 10 times of the drill bit diameters itself. However, the major complications th...

Full description

Saved in:
Bibliographic Details
Main Author: Muhamad Aslam, Abdul Raub
Format: Undergraduates Project Papers
Language:English
Published: 2016
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/16296/1/Condition%20monitoring%20of%20deep%20drilling%20process%20for%20cooling%20channel%20making%20in%20hot%20press%20die-CD%2010409.pdf
http://umpir.ump.edu.my/id/eprint/16296/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
id my.ump.umpir.16296
record_format eprints
spelling my.ump.umpir.162962022-11-07T09:52:02Z http://umpir.ump.edu.my/id/eprint/16296/ Condition monitoring of deep drilling process for cooling channel making in hot press die Muhamad Aslam, Abdul Raub TS Manufactures Deep drilling operation is one of the major process that is widely used in the manufacturing industry. To make a cooling channel of hot press forming die, deep drilling is a crucial process which is the drilling depth is 10 times of the drill bit diameters itself. However, the major complications that occur is the drill bits will become wear and breaks as the drilling depth keep increasing. This will impact the efficiency of the drilling process. To overcome this drawback, Tool Condition Monitoring (TCM) was introduced to refining the quality of the drilling process by monitor the drilling operation, whether by direct or indirect monitoring, thus will improve tool life expectancy by notifying the operator to stop the machine. SKD 61 which is widely used as die material and High Speed Steel (HSS) drill bit was chosen. To improve accuracy, Tri-axial Accelerometer (PCB356B21) was used to detect the vibration of the drill bit when drilling process occurs. The data obtained from this experiment is in the form of acceleration and Fast Fourier Transform (FFT) signal which is acceleration x, acceleration y, acceleration z, FFT x, FFT y, and FFT z. Tool condition can be classify into five types by using this data which is good condition, small corner wear, medium corner wear, large corner wear and fracture. To classify this data, machine learning method such as Support Vector Machine (SVM) and Artificial Neural Network (ANN) was employed. SVM performs classification process based on the data input vector that comprise as fault in the machine. The fault is then being produced as the pattern and SVM will recognize thus classify this pattern corresponding to the fault. Nevertheless, the major downside of SVM is less accurate of classifying result due to the data over-fitting. To get an accurate result, the data is compared with Artificial Neural Network machine learning. ANN performs an excellent classifying by determining the correct set of input data, number of hidden layers, target data, and applying a suitable algorithm, which is proven better classifying result than SVM in the aspect of classifying accuracy and number of errors. Consequently, ANN is the most suitable method to classify tool condition, and are capable to be employed for online tool failure detection system which is beneficial for optimizing tool condition in industries. 2016-06 Undergraduates Project Papers NonPeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/16296/1/Condition%20monitoring%20of%20deep%20drilling%20process%20for%20cooling%20channel%20making%20in%20hot%20press%20die-CD%2010409.pdf Muhamad Aslam, Abdul Raub (2016) Condition monitoring of deep drilling process for cooling channel making in hot press die. Faculty of Manufacturing Engineering, Universiti Malaysia Pahang.
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic TS Manufactures
spellingShingle TS Manufactures
Muhamad Aslam, Abdul Raub
Condition monitoring of deep drilling process for cooling channel making in hot press die
description Deep drilling operation is one of the major process that is widely used in the manufacturing industry. To make a cooling channel of hot press forming die, deep drilling is a crucial process which is the drilling depth is 10 times of the drill bit diameters itself. However, the major complications that occur is the drill bits will become wear and breaks as the drilling depth keep increasing. This will impact the efficiency of the drilling process. To overcome this drawback, Tool Condition Monitoring (TCM) was introduced to refining the quality of the drilling process by monitor the drilling operation, whether by direct or indirect monitoring, thus will improve tool life expectancy by notifying the operator to stop the machine. SKD 61 which is widely used as die material and High Speed Steel (HSS) drill bit was chosen. To improve accuracy, Tri-axial Accelerometer (PCB356B21) was used to detect the vibration of the drill bit when drilling process occurs. The data obtained from this experiment is in the form of acceleration and Fast Fourier Transform (FFT) signal which is acceleration x, acceleration y, acceleration z, FFT x, FFT y, and FFT z. Tool condition can be classify into five types by using this data which is good condition, small corner wear, medium corner wear, large corner wear and fracture. To classify this data, machine learning method such as Support Vector Machine (SVM) and Artificial Neural Network (ANN) was employed. SVM performs classification process based on the data input vector that comprise as fault in the machine. The fault is then being produced as the pattern and SVM will recognize thus classify this pattern corresponding to the fault. Nevertheless, the major downside of SVM is less accurate of classifying result due to the data over-fitting. To get an accurate result, the data is compared with Artificial Neural Network machine learning. ANN performs an excellent classifying by determining the correct set of input data, number of hidden layers, target data, and applying a suitable algorithm, which is proven better classifying result than SVM in the aspect of classifying accuracy and number of errors. Consequently, ANN is the most suitable method to classify tool condition, and are capable to be employed for online tool failure detection system which is beneficial for optimizing tool condition in industries.
format Undergraduates Project Papers
author Muhamad Aslam, Abdul Raub
author_facet Muhamad Aslam, Abdul Raub
author_sort Muhamad Aslam, Abdul Raub
title Condition monitoring of deep drilling process for cooling channel making in hot press die
title_short Condition monitoring of deep drilling process for cooling channel making in hot press die
title_full Condition monitoring of deep drilling process for cooling channel making in hot press die
title_fullStr Condition monitoring of deep drilling process for cooling channel making in hot press die
title_full_unstemmed Condition monitoring of deep drilling process for cooling channel making in hot press die
title_sort condition monitoring of deep drilling process for cooling channel making in hot press die
publishDate 2016
url http://umpir.ump.edu.my/id/eprint/16296/1/Condition%20monitoring%20of%20deep%20drilling%20process%20for%20cooling%20channel%20making%20in%20hot%20press%20die-CD%2010409.pdf
http://umpir.ump.edu.my/id/eprint/16296/
_version_ 1751536334920482816