Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification

Contrast and color are important attributes to extract and acquire much information from underwater images. However, normal underwater images contain bright foreground and dark background areas. Previous enhancement methods enhance the foreground areas but retain darkness and blue-green illumination...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad Shahrizan, Abdul Ghani, Mat Isa, Nor Ashidi
Format: Article
Language:English
Published: Elsevier B.V. 2017
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/18464/1/fkp-2017-shahrizan-Automatic%20system%20for%20improving%20underwater1.pdf
http://umpir.ump.edu.my/id/eprint/18464/
http://dx.doi.org/10.1016/j.compag.2017.07.021
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
id my.ump.umpir.18464
record_format eprints
spelling my.ump.umpir.184642017-11-07T04:01:33Z http://umpir.ump.edu.my/id/eprint/18464/ Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification Ahmad Shahrizan, Abdul Ghani Mat Isa, Nor Ashidi S Agriculture (General) SH Aquaculture. Fisheries. Angling TK Electrical engineering. Electronics Nuclear engineering TR Photography Contrast and color are important attributes to extract and acquire much information from underwater images. However, normal underwater images contain bright foreground and dark background areas. Previous enhancement methods enhance the foreground areas but retain darkness and blue-green illumination of background areas. This study proposes a new method of enhancing underwater image, which is called recursive adaptive histogram modification (RAHIM), to modify image histograms column wisely in accordance with Rayleigh distribution. Modifying image saturation and brightness in the hue–saturation–value color model increases the natural impression of image color through the human visual system. Qualitative and quantitative evaluations prove the effectiveness of the proposed method. Comparison with state-of-the-art methods shows that the proposed method produces the highest average entropy, measure of enhancement (EME), and EME by entropy with the values of 7.618, 28.193, and 6.829, respectively. Elsevier B.V. 2017-07-27 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/18464/1/fkp-2017-shahrizan-Automatic%20system%20for%20improving%20underwater1.pdf Ahmad Shahrizan, Abdul Ghani and Mat Isa, Nor Ashidi (2017) Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification. Computers and Electronics in Agriculture, 141. pp. 181-195. ISSN 0168-1699 http://dx.doi.org/10.1016/j.compag.2017.07.021 DOI: 10.1016/j.compag.2017.07.021
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic S Agriculture (General)
SH Aquaculture. Fisheries. Angling
TK Electrical engineering. Electronics Nuclear engineering
TR Photography
spellingShingle S Agriculture (General)
SH Aquaculture. Fisheries. Angling
TK Electrical engineering. Electronics Nuclear engineering
TR Photography
Ahmad Shahrizan, Abdul Ghani
Mat Isa, Nor Ashidi
Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification
description Contrast and color are important attributes to extract and acquire much information from underwater images. However, normal underwater images contain bright foreground and dark background areas. Previous enhancement methods enhance the foreground areas but retain darkness and blue-green illumination of background areas. This study proposes a new method of enhancing underwater image, which is called recursive adaptive histogram modification (RAHIM), to modify image histograms column wisely in accordance with Rayleigh distribution. Modifying image saturation and brightness in the hue–saturation–value color model increases the natural impression of image color through the human visual system. Qualitative and quantitative evaluations prove the effectiveness of the proposed method. Comparison with state-of-the-art methods shows that the proposed method produces the highest average entropy, measure of enhancement (EME), and EME by entropy with the values of 7.618, 28.193, and 6.829, respectively.
format Article
author Ahmad Shahrizan, Abdul Ghani
Mat Isa, Nor Ashidi
author_facet Ahmad Shahrizan, Abdul Ghani
Mat Isa, Nor Ashidi
author_sort Ahmad Shahrizan, Abdul Ghani
title Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification
title_short Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification
title_full Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification
title_fullStr Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification
title_full_unstemmed Automatic System for Improving Underwater Image Contrast and Color Through Recursive Adaptive Histogram Modification
title_sort automatic system for improving underwater image contrast and color through recursive adaptive histogram modification
publisher Elsevier B.V.
publishDate 2017
url http://umpir.ump.edu.my/id/eprint/18464/1/fkp-2017-shahrizan-Automatic%20system%20for%20improving%20underwater1.pdf
http://umpir.ump.edu.my/id/eprint/18464/
http://dx.doi.org/10.1016/j.compag.2017.07.021
_version_ 1643668453857427456