An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals

Brain Computer-Interfaces (BCI) offers a means of controlling prostheses for neurological disorder patients, primarily owing to their inability to control such devices due to their inherent physical limitations. More often than not, the control of such devices exploits the use of Electroencephalogra...

Full description

Saved in:
Bibliographic Details
Main Authors: Jothi Letchumy, Mahendra Kumar, Rashid, Mamunur, Musa, Rabiu Muazu, Mohd Azraai, Mohd Razman, Norizam, Sulaiman, Rozita, Jailani, Anwar, P. P. Abdul Majeed
Format: Article
Language:English
Published: Penerbit UMP 2020
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/30700/2/An%20Evaluation%20of%20Different%20Fast%20Fourier%20Transform%20-%20Transfer%20Learning%20Pipelines%20for%20the%20Classification%20of%20Wink-based%20EEG%20Signals.pdf
http://umpir.ump.edu.my/id/eprint/30700/
https://journal.ump.edu.my/mekatronika/article/view/5939/1099
https://doi.org/10.15282/mekatronika.v2i1.4881
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
id my.ump.umpir.30700
record_format eprints
spelling my.ump.umpir.307002021-02-23T02:04:52Z http://umpir.ump.edu.my/id/eprint/30700/ An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Musa, Rabiu Muazu Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering Brain Computer-Interfaces (BCI) offers a means of controlling prostheses for neurological disorder patients, primarily owing to their inability to control such devices due to their inherent physical limitations. More often than not, the control of such devices exploits the use of Electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features is often a laborious undertaking. The use of Transfer Learning (TL) has been demonstrated to be able to mitigate the issue. However, the employment of such a method towards BCI applications, particularly with regards to EEG signals are limited. The present study aims to assess the effectiveness of a number of DenseNet TL models, viz. DenseNet169, DenseNet121 and DenseNet201 in extracting features for the classification of wink-based EEG signals. The extracted features are then classified through an optimised Random Forest (RF) classifier. The raw EEG signals are transformed into a spectrogram image via Fast Fourier Transform (FFT) before it was fed into selected TL models. The dataset was split with a stratified ratio of 60:20:20 into train, test, and validation datasets, respectively. The hyperparameters of the RF model was optimised through the grid search approach that utilises the five-fold cross-validation technique. It was established from the study that amongst the DenseNet pipelines evaluated, the DenseNet169 performed the best with an overall validation and test accuracy of 89%. The findings of the present investigation could facilitate BCI applications, e.g., for a grasping exoskeleton. Penerbit UMP 2020 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/30700/2/An%20Evaluation%20of%20Different%20Fast%20Fourier%20Transform%20-%20Transfer%20Learning%20Pipelines%20for%20the%20Classification%20of%20Wink-based%20EEG%20Signals.pdf Jothi Letchumy, Mahendra Kumar and Rashid, Mamunur and Musa, Rabiu Muazu and Mohd Azraai, Mohd Razman and Norizam, Sulaiman and Rozita, Jailani and Anwar, P. P. Abdul Majeed (2020) An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals. Mekatronika - Journal of Intelligent Manufacturing & Mechatronics, 2 (1). pp. 1-7. ISSN 2637-0883 https://journal.ump.edu.my/mekatronika/article/view/5939/1099 https://doi.org/10.15282/mekatronika.v2i1.4881
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic TA Engineering (General). Civil engineering (General)
TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TA Engineering (General). Civil engineering (General)
TK Electrical engineering. Electronics Nuclear engineering
Jothi Letchumy, Mahendra Kumar
Rashid, Mamunur
Musa, Rabiu Muazu
Mohd Azraai, Mohd Razman
Norizam, Sulaiman
Rozita, Jailani
Anwar, P. P. Abdul Majeed
An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
description Brain Computer-Interfaces (BCI) offers a means of controlling prostheses for neurological disorder patients, primarily owing to their inability to control such devices due to their inherent physical limitations. More often than not, the control of such devices exploits the use of Electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features is often a laborious undertaking. The use of Transfer Learning (TL) has been demonstrated to be able to mitigate the issue. However, the employment of such a method towards BCI applications, particularly with regards to EEG signals are limited. The present study aims to assess the effectiveness of a number of DenseNet TL models, viz. DenseNet169, DenseNet121 and DenseNet201 in extracting features for the classification of wink-based EEG signals. The extracted features are then classified through an optimised Random Forest (RF) classifier. The raw EEG signals are transformed into a spectrogram image via Fast Fourier Transform (FFT) before it was fed into selected TL models. The dataset was split with a stratified ratio of 60:20:20 into train, test, and validation datasets, respectively. The hyperparameters of the RF model was optimised through the grid search approach that utilises the five-fold cross-validation technique. It was established from the study that amongst the DenseNet pipelines evaluated, the DenseNet169 performed the best with an overall validation and test accuracy of 89%. The findings of the present investigation could facilitate BCI applications, e.g., for a grasping exoskeleton.
format Article
author Jothi Letchumy, Mahendra Kumar
Rashid, Mamunur
Musa, Rabiu Muazu
Mohd Azraai, Mohd Razman
Norizam, Sulaiman
Rozita, Jailani
Anwar, P. P. Abdul Majeed
author_facet Jothi Letchumy, Mahendra Kumar
Rashid, Mamunur
Musa, Rabiu Muazu
Mohd Azraai, Mohd Razman
Norizam, Sulaiman
Rozita, Jailani
Anwar, P. P. Abdul Majeed
author_sort Jothi Letchumy, Mahendra Kumar
title An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
title_short An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
title_full An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
title_fullStr An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
title_full_unstemmed An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
title_sort evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based eeg signals
publisher Penerbit UMP
publishDate 2020
url http://umpir.ump.edu.my/id/eprint/30700/2/An%20Evaluation%20of%20Different%20Fast%20Fourier%20Transform%20-%20Transfer%20Learning%20Pipelines%20for%20the%20Classification%20of%20Wink-based%20EEG%20Signals.pdf
http://umpir.ump.edu.my/id/eprint/30700/
https://journal.ump.edu.my/mekatronika/article/view/5939/1099
https://doi.org/10.15282/mekatronika.v2i1.4881
_version_ 1692991967355469824