A cfd simulation study on the effect of volume ratio on pressure piling

This paper presents the CFD simulation study on the effect of volume ratio on pressure piling. The explosion of flammable mixtures in interconnected compartments is commonly defined as “pressure piling” and its occurrence is a relevant issue of industrial safety. Pressure piling is a situation where...

Full description

Saved in:
Bibliographic Details
Main Author: Dhivya Lakshmi, Mohana Sundram
Format: Undergraduates Project Papers
Language:English
Published: 2014
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/9186/1/12.A%20cfd%20simulation%20study%20on%20the%20effect%20of%20volume%20ratio%20on%20pressure%20piling.pdf
http://umpir.ump.edu.my/id/eprint/9186/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Malaysia Pahang
Language: English
Description
Summary:This paper presents the CFD simulation study on the effect of volume ratio on pressure piling. The explosion of flammable mixtures in interconnected compartments is commonly defined as “pressure piling” and its occurrence is a relevant issue of industrial safety. Pressure piling is a situation where peak pressures much higher than the expected values predicted by thermodynamic are generated in the geometry. The geometric characteristics of the vessels such as the tube area and ratio of volumes of the interconnected vessels play important role in the intensity of the pressure piling. Moreover, pre-compression and violence of explosion are the two main mechanisms affecting pressure piling. A CFD-Ansys and RANS model were used in this paper. The models duplicated experimental explosion behaviours and the results were compared with experimental. Propane-air mixture was used to study pressure piling. In the end it was found that pre-compression and violence of explosion are the two main mechanisms affecting pressure piling, which in turns affect the ratio between reaction and venting time in the second vessel (Brt). Higher the Brt number in the second vessel, lower the occurrence of pressure piling. Lower the volume ratio, higher the violence of explosion. Increasing the volume ratio results in a more intense pre-compression (pressure in the secondary vessel at ignition time increases) thus suggesting that ignition in the second vessel occurs starting from a higher value of pressure. Therefore, low pre-compression and high Brt number can prevent the occurrence of pressure piling