Characterization of a MADS-box gene from Musa sp. (pisang berangan)
Homeotic genes are known to play important roles in the development of fruits and flowers. Most of these genes belong to a large family of regulatory genes that have a characteristic DNA binding domain known as the MADS-box. As a pioneer effort in the study of homeotic genes from banana, a full leng...
Saved in:
Main Author: | |
---|---|
Format: | Thesis |
Language: | English English |
Published: |
2008
|
Subjects: | |
Online Access: | https://eprints.ums.edu.my/id/eprint/8990/1/24%20PAGES.pdf https://eprints.ums.edu.my/id/eprint/8990/2/FULLTEXT.pdf https://eprints.ums.edu.my/id/eprint/8990/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Malaysia Sabah |
Language: | English English |
Summary: | Homeotic genes are known to play important roles in the development of fruits and flowers. Most of these genes belong to a large family of regulatory genes that have a characteristic DNA binding domain known as the MADS-box. As a pioneer effort in the study of homeotic genes from banana, a full length MADS-box cDNA from an inflorescence of Musa acuminata var. Berangan designated as MADS3 has been successfully isolated and characterized. The approach of this research was by isolating Poly A+ mRNA from the inflorescence of Pisang Berangan using oligo-dT magnetic beads. First strand cDNA was synthesized using a dT18 anchored primer directly onto those beads. A degenerate primer designed by aligning the sequences of the 180bp MADS domain from known MADS-box genes was used as the forward primer to perform a 3' RACE. This generated a complete coding sequence. To obtain the 5' untranslated region on the N terminal side of the MADS-box domain a 5' RACE was carried out. NCBI BLAST analyses were done on these sequences to confirm authenticity to known MADS-box genes. The PHYLIP package was used to further analyze these sequences. The putative 244 amino acid sequence deduced from this research supporting the MADS-box region and the K domain of the corresponding gene suggests that it is a member of the Type II family. MADS3 belongs to the AGL clade and is a member of the SEPALLATA subfamily of MADS-box transcription factors. |
---|