Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation
An important element in the electric power distribution system is the underground cable. However continuous applications of high voltages unto the cable may lead to insulation degradations and subsequent cable failure. Since any disruption to the electricity supply may lead to economic losses as wel...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Insight Society
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Tenaga Nasional |
id |
my.uniten.dspace-23436 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-234362023-05-29T14:40:29Z Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation Sulaiman S. Mohd Ariffin A. Kien D.T. 36562570400 16400722400 55349294400 An important element in the electric power distribution system is the underground cable. However continuous applications of high voltages unto the cable may lead to insulation degradations and subsequent cable failure. Since any disruption to the electricity supply may lead to economic losses as well as lowering customer satisfaction, the maintenance of cables is very important to an electrical utility company. Thus, a reliable diagnostic technique that is able to accurately assess the condition of cable insulation operating is critical, in order for cable replacement exercise to be done. One such diagnostic technique to assess the level of degradation within the cable insulation is the Polarization/Depolarization Current (PDC) analysis. This research work attempts to investigate PDC behaviour for medium voltage (MV) cross-linked polyethylene (XLPE) insulated cables, via baseline PDC measurements and utilizing the measured data to simulate for PDC analysis. Once PDC simulations have been achieved, the values of conductivity of XLPE cable insulations can be approximated. Cable conductivity serves as an indicator of the level of degradation of XLPE cable insulation. It was found that for new and unused XLPE cables, the polarization and depolarization currents have almost overlapping trendlines, as the cable insulation's conduction current is negligible. Using a linear dielectric circuit equivalence model as the XLPE cable insulation and its corresponding governing equations, it is possible to optimize the number of parallel RC branches to simulate PDC analysis, with a very high degree of accuracy. The PDC simulation model has been validated against the baseline PDC measurements. Final 2023-05-29T06:40:29Z 2023-05-29T06:40:29Z 2017 Article 10.18517/ijaseit.7.3.2325 2-s2.0-85021054440 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021054440&doi=10.18517%2fijaseit.7.3.2325&partnerID=40&md5=aae875ecc01c05277d994c13b0be6e0b https://irepository.uniten.edu.my/handle/123456789/23436 7 3 971 979 All Open Access, Hybrid Gold Insight Society Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
An important element in the electric power distribution system is the underground cable. However continuous applications of high voltages unto the cable may lead to insulation degradations and subsequent cable failure. Since any disruption to the electricity supply may lead to economic losses as well as lowering customer satisfaction, the maintenance of cables is very important to an electrical utility company. Thus, a reliable diagnostic technique that is able to accurately assess the condition of cable insulation operating is critical, in order for cable replacement exercise to be done. One such diagnostic technique to assess the level of degradation within the cable insulation is the Polarization/Depolarization Current (PDC) analysis. This research work attempts to investigate PDC behaviour for medium voltage (MV) cross-linked polyethylene (XLPE) insulated cables, via baseline PDC measurements and utilizing the measured data to simulate for PDC analysis. Once PDC simulations have been achieved, the values of conductivity of XLPE cable insulations can be approximated. Cable conductivity serves as an indicator of the level of degradation of XLPE cable insulation. It was found that for new and unused XLPE cables, the polarization and depolarization currents have almost overlapping trendlines, as the cable insulation's conduction current is negligible. Using a linear dielectric circuit equivalence model as the XLPE cable insulation and its corresponding governing equations, it is possible to optimize the number of parallel RC branches to simulate PDC analysis, with a very high degree of accuracy. The PDC simulation model has been validated against the baseline PDC measurements. |
author2 |
36562570400 |
author_facet |
36562570400 Sulaiman S. Mohd Ariffin A. Kien D.T. |
format |
Article |
author |
Sulaiman S. Mohd Ariffin A. Kien D.T. |
spellingShingle |
Sulaiman S. Mohd Ariffin A. Kien D.T. Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation |
author_sort |
Sulaiman S. |
title |
Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation |
title_short |
Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation |
title_full |
Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation |
title_fullStr |
Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation |
title_full_unstemmed |
Determining the number of parallel RC branches in polarization/depolarization current modeling for XLPE cable insulation |
title_sort |
determining the number of parallel rc branches in polarization/depolarization current modeling for xlpe cable insulation |
publisher |
Insight Society |
publishDate |
2023 |
_version_ |
1806423496656420864 |