Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk
The goal of this study is to examine the significant parameter of unsteady Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>‐CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>/H<jats:s...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Wiley
2023
|
Online Access: | http://psasir.upm.edu.my/id/eprint/110346/ https://onlinelibrary.wiley.com/doi/10.1002/zamm.202200384 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
id |
my.upm.eprints.110346 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.1103462024-09-23T06:47:39Z http://psasir.upm.edu.my/id/eprint/110346/ Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk Khashi'ie, Najiyah Safwa Waini, Iskandar Hamzah, Khairum Mukhtar, Mohd Fariduddin Mohd Kasim, Abdul Rahman Md Arifin, Norihan Pop, Ioan The goal of this study is to examine the significant parameter of unsteady Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>‐CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>/H<jats:sub>2</jats:sub>O with heat generation flowing on a rotating disk using numerical and statistical approaches. The mathematical model respected to time‐dependent is first transformed into a set of ordinary differential equations (ODEs) by using similarity variables. The computation is done by employing bvp4c method utilizing MATLAB software. The validation of present model and the output is done by direct comparison with the established report in literature and found to be in a very good agreement. It is worth to mention the presence computation produces up to third solutions. The variations of skin friction coefficient for radial and azimuthal directions including Nusselt number for different value of magnetic parameter, suction parameter, and heat generation parameter are plotted graphically. A Response Surface Methodology (RSM) is applied to scrutinize the physical parameters that affect the response functions under a given set of assumptions. It is revealed the values of skin friction coefficients significantly affected by the magnetic and suction parameters whereas the values of thermal rate are influenced by magnetic, suction, and heat generation parameters. Wiley 2023-01 Article PeerReviewed Khashi'ie, Najiyah Safwa and Waini, Iskandar and Hamzah, Khairum and Mukhtar, Mohd Fariduddin and Mohd Kasim, Abdul Rahman and Md Arifin, Norihan and Pop, Ioan (2023) Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 103 (6). pp. 1-17. ISSN 0044-2267; ESSN:1521-4001 https://onlinelibrary.wiley.com/doi/10.1002/zamm.202200384 10.1002/zamm.202200384 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
description |
The goal of this study is to examine the significant parameter of unsteady Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>‐CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>/H<jats:sub>2</jats:sub>O with heat generation flowing on a rotating disk using numerical and statistical approaches. The mathematical model respected to time‐dependent is first transformed into a set of ordinary differential equations (ODEs) by using similarity variables. The computation is done by employing bvp4c method utilizing MATLAB software. The validation of present model and the output is done by direct comparison with the established report in literature and found to be in a very good agreement. It is worth to mention the presence computation produces up to third solutions. The variations of skin friction coefficient for radial and azimuthal directions including Nusselt number for different value of magnetic parameter, suction parameter, and heat generation parameter are plotted graphically. A Response Surface Methodology (RSM) is applied to scrutinize the physical parameters that affect the response functions under a given set of assumptions. It is revealed the values of skin friction coefficients significantly affected by the magnetic and suction parameters whereas the values of thermal rate are influenced by magnetic, suction, and heat generation parameters. |
format |
Article |
author |
Khashi'ie, Najiyah Safwa Waini, Iskandar Hamzah, Khairum Mukhtar, Mohd Fariduddin Mohd Kasim, Abdul Rahman Md Arifin, Norihan Pop, Ioan |
spellingShingle |
Khashi'ie, Najiyah Safwa Waini, Iskandar Hamzah, Khairum Mukhtar, Mohd Fariduddin Mohd Kasim, Abdul Rahman Md Arifin, Norihan Pop, Ioan Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk |
author_facet |
Khashi'ie, Najiyah Safwa Waini, Iskandar Hamzah, Khairum Mukhtar, Mohd Fariduddin Mohd Kasim, Abdul Rahman Md Arifin, Norihan Pop, Ioan |
author_sort |
Khashi'ie, Najiyah Safwa |
title |
Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk |
title_short |
Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk |
title_full |
Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk |
title_fullStr |
Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk |
title_full_unstemmed |
Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk |
title_sort |
numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk |
publisher |
Wiley |
publishDate |
2023 |
url |
http://psasir.upm.edu.my/id/eprint/110346/ https://onlinelibrary.wiley.com/doi/10.1002/zamm.202200384 |
_version_ |
1811686065352736768 |