Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology
Oil palm empty fruit bunch (OPEFB) is one of the most important wastes from the oil palm industry which can be treated and utilized as a main carbon source in fermentation. The ability of newly isolated Aspergillus terreus to produce cellulases in submerged fermentation with OPEFB fibre as carbon so...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American-Eurasian Network for Scientific Information
2010
|
Online Access: | http://psasir.upm.edu.my/id/eprint/15966/1/Optimization%20of%20cellulase%20production%20by%20Aspergillus%20Terreus%20under%20submerged%20fermentation%20using%20response%20surface%20methodology.pdf http://psasir.upm.edu.my/id/eprint/15966/ http://www.ajbasweb.com/old/ajbas_December_2010.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
Language: | English |
id |
my.upm.eprints.15966 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.159662018-09-24T02:54:01Z http://psasir.upm.edu.my/id/eprint/15966/ Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology Nour, Mahdi Shahriari Abdul Wahab, Mohd Noor Ariff, Arbakariya Mohamad, Rosfarizan Mustafa, Shuhaimi Oil palm empty fruit bunch (OPEFB) is one of the most important wastes from the oil palm industry which can be treated and utilized as a main carbon source in fermentation. The ability of newly isolated Aspergillus terreus to produce cellulases in submerged fermentation with OPEFB fibre as carbon source was investigated. Response surface methodology based on central composite design (CCD) was chosen to optimize the composition of four medium constituents viz, OPEFB fibers (5-15 g/L), yeast extract (3-9 g/L), CaCl2 (1-5 mM), MgSO4 (3-7mM) and to optimize the level of two environmental condition agitation speed (200-300 rpm) and temperature (28-32°C). A second order model was proposed to assess the effect of these 6 variables. Based on the proposed model, the optimized conditions for the maximum cellulase production was 13.90 g/L OPEFB fiber, 8 g/L yeast extract, 3.5 mM CaCl2, 7 mM of MgSO4, 225 rpm of agitation and 29°C temperature. The optimized values obtained by the statistical analysis gave 14.25U/ml of CMCase, 1.13 U/ml of FPase, and 9.86 U/ml of β-glucosidase and 5.2 g/l of Cell concentration. In fermentation using the optimized conditions, the fungi cell concentration, CMCase, FPase and β-glucosidase activity was 5.2 g/l, 14.25 U/ml, 1.13 U/ml and 9.86 U/ml, respectively. American-Eurasian Network for Scientific Information 2010 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/15966/1/Optimization%20of%20cellulase%20production%20by%20Aspergillus%20Terreus%20under%20submerged%20fermentation%20using%20response%20surface%20methodology.pdf Nour, Mahdi Shahriari and Abdul Wahab, Mohd Noor and Ariff, Arbakariya and Mohamad, Rosfarizan and Mustafa, Shuhaimi (2010) Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology. Australian Journal of Basic and Applied Sciences, 4 (12). pp. 6106-6124. ISSN 1991-8178 http://www.ajbasweb.com/old/ajbas_December_2010.html |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
Oil palm empty fruit bunch (OPEFB) is one of the most important wastes from the oil palm industry which can be treated and utilized as a main carbon source in fermentation. The ability of newly isolated Aspergillus terreus to produce cellulases in submerged fermentation with OPEFB fibre as carbon source was investigated. Response surface methodology based on central composite design (CCD) was chosen to optimize the composition of four medium constituents viz, OPEFB fibers (5-15 g/L), yeast extract (3-9 g/L), CaCl2 (1-5 mM), MgSO4 (3-7mM) and to optimize the level of two environmental condition agitation speed (200-300 rpm) and temperature (28-32°C). A second order model was proposed to assess the effect of these 6 variables. Based on the proposed model, the optimized conditions for the maximum cellulase production was 13.90 g/L OPEFB fiber, 8 g/L yeast extract, 3.5 mM CaCl2, 7 mM of MgSO4, 225 rpm of agitation and 29°C temperature. The optimized values obtained by the statistical analysis gave 14.25U/ml of CMCase, 1.13 U/ml of FPase, and 9.86 U/ml of β-glucosidase and 5.2 g/l of Cell concentration. In fermentation using the optimized conditions, the fungi cell concentration, CMCase, FPase and β-glucosidase activity was 5.2 g/l, 14.25 U/ml, 1.13 U/ml and 9.86 U/ml, respectively. |
format |
Article |
author |
Nour, Mahdi Shahriari Abdul Wahab, Mohd Noor Ariff, Arbakariya Mohamad, Rosfarizan Mustafa, Shuhaimi |
spellingShingle |
Nour, Mahdi Shahriari Abdul Wahab, Mohd Noor Ariff, Arbakariya Mohamad, Rosfarizan Mustafa, Shuhaimi Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology |
author_facet |
Nour, Mahdi Shahriari Abdul Wahab, Mohd Noor Ariff, Arbakariya Mohamad, Rosfarizan Mustafa, Shuhaimi |
author_sort |
Nour, Mahdi Shahriari |
title |
Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology |
title_short |
Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology |
title_full |
Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology |
title_fullStr |
Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology |
title_full_unstemmed |
Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology |
title_sort |
optimization of cellulase production by aspergillus terreus under submerged fermentation using response surface methodology |
publisher |
American-Eurasian Network for Scientific Information |
publishDate |
2010 |
url |
http://psasir.upm.edu.my/id/eprint/15966/1/Optimization%20of%20cellulase%20production%20by%20Aspergillus%20Terreus%20under%20submerged%20fermentation%20using%20response%20surface%20methodology.pdf http://psasir.upm.edu.my/id/eprint/15966/ http://www.ajbasweb.com/old/ajbas_December_2010.html |
_version_ |
1643826080575913984 |