Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material
Polypyrrole (PPy) was reinforced with reduced graphene oxide (RGO) and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Publishing Corporation
2013
|
Online Access: | http://psasir.upm.edu.my/id/eprint/30250/1/123.pdf http://psasir.upm.edu.my/id/eprint/30250/ http://www.hindawi.com/journals/jnm/2013/653890/abs/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Putra Malaysia |
Language: | English |
id |
my.upm.eprints.30250 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.302502016-03-21T13:09:56Z http://psasir.upm.edu.my/id/eprint/30250/ Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material Eeu, Yik Chong Lim, Hong Ngee Lim, Yee Seng Zakarya, Salwani Asyikin Huang, Nay Ming Polypyrrole (PPy) was reinforced with reduced graphene oxide (RGO) and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM) image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD) profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV) analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO) and individual (PPy) counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge. Hindawi Publishing Corporation 2013 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/30250/1/123.pdf Eeu, Yik Chong and Lim, Hong Ngee and Lim, Yee Seng and Zakarya, Salwani Asyikin and Huang, Nay Ming (2013) Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material. Journal of Nanomaterials, 2013. art. no. 653890. pp. 1-6. ISSN 1687-4110; ESSN: 1687-4129 http://www.hindawi.com/journals/jnm/2013/653890/abs/ 10.1155/2013/653890 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
Polypyrrole (PPy) was reinforced with reduced graphene oxide (RGO) and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM) image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD) profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV) analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO) and individual (PPy) counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge. |
format |
Article |
author |
Eeu, Yik Chong Lim, Hong Ngee Lim, Yee Seng Zakarya, Salwani Asyikin Huang, Nay Ming |
spellingShingle |
Eeu, Yik Chong Lim, Hong Ngee Lim, Yee Seng Zakarya, Salwani Asyikin Huang, Nay Ming Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material |
author_facet |
Eeu, Yik Chong Lim, Hong Ngee Lim, Yee Seng Zakarya, Salwani Asyikin Huang, Nay Ming |
author_sort |
Eeu, Yik Chong |
title |
Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material |
title_short |
Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material |
title_full |
Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material |
title_fullStr |
Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material |
title_full_unstemmed |
Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material |
title_sort |
electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material |
publisher |
Hindawi Publishing Corporation |
publishDate |
2013 |
url |
http://psasir.upm.edu.my/id/eprint/30250/1/123.pdf http://psasir.upm.edu.my/id/eprint/30250/ http://www.hindawi.com/journals/jnm/2013/653890/abs/ |
_version_ |
1643830002136907776 |