Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: determination of myricetin in some drinks

In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible re...

Full description

Saved in:
Bibliographic Details
Main Authors: Hajian, Reza, Yusof, Nor Azah, Faragi, Tayebe, Shams, Nafiseh
Format: Article
Language:English
Published: Public Library of Science 2014
Online Access:http://psasir.upm.edu.my/id/eprint/37601/1/37601.pdf
http://psasir.upm.edu.my/id/eprint/37601/
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096686
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
Description
Summary:In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L−1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10−8 to 4.0×10−5 mol L−1 with the detection limit of 1.2×10−8 mol L−1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices.