Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras

Faculty: Science Let V be a vector space of dimension n over an algebraically closed ¯eld K (charK=0). Bilinear maps V £ V ! V form a vector space Hom(V ­ V; V ) of dimensional n3, which can be considered together with its natural structure of an a±ne algebraic variety over K and denoted by Algn...

Full description

Saved in:
Bibliographic Details
Main Author: Obaiys, Sozan J.
Format: Thesis
Language:English
English
Published: 2009
Online Access:http://psasir.upm.edu.my/id/eprint/5700/1/A_FS_2009_6.pdf
http://psasir.upm.edu.my/id/eprint/5700/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Putra Malaysia
Language: English
English
id my.upm.eprints.5700
record_format eprints
spelling my.upm.eprints.57002013-05-27T07:24:32Z http://psasir.upm.edu.my/id/eprint/5700/ Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras Obaiys, Sozan J. Faculty: Science Let V be a vector space of dimension n over an algebraically closed ¯eld K (charK=0). Bilinear maps V £ V ! V form a vector space Hom(V ­ V; V ) of dimensional n3, which can be considered together with its natural structure of an a±ne algebraic variety over K and denoted by Algn(K) »= Kn3 . An n-dimensional algebra L over K can be considered as an element ¸(L) of Algn(K) via the bilinear mapping ¸ : L ­ L ! L de¯ning a binary algebraic operation on L : let fe1; e2; : : : ; eng be a basis of the algebra L: Then the table of multiplication of L is represented by point (°k ij) of this a±ne space as follows: ¸(ei; ej) = Xn k=1 °k ijek: Here °k ij are called structural constants of L: The linear reductive group GLn(K) acts on Algn(K) by (g ¤ ¸)(x; y) = g(¸(g¡1(x); g¡1(y)))(\transport of struc- ture"). Two algebra structures ¸1 and ¸2 on V are isomorphic if and only if they belong to the same orbit under this action.Recall that an algebra L over a ¯eld K is called a Leibniz algebra if its binary operation satis¯es the following Leibniz identity: [x; [y; z]] = [[x; y]; z] ¡ [[x; z]; y]; Leibniz algebras were introduced by J.-L.Loday. (For this reason, they have also been called \Loday algebras"). A skew-symmetric Leibniz algebra is a Lie algebra. In this case the Leibniz identity is just the Jacobi identity. This research is devoted to the classi¯cation problem of Leibn in low dimen- sional cases. There are two sources to get such a classi¯cation. The ¯rst of them is naturally graded non Lie ¯liform Leibniz algebras and another one is naturally graded ¯liform Lie algebras. Here we consider Leibniz algebras appearing from the naturally graded non Lie ¯liform Leibniz algebras. It is known that this class of algebras can be split into two subclasses. How- ever, isomorphisms within each class have not been investigated yet. Recently U.D.Bekbaev and I.S.Rakhimov suggested an approach to the isomorphism problem of Leibniz algebras based on algebraic invariants. This research presents an implementation of this invariant approach in 9- dimensional case. We give the list of all 9-dimensional non Lie ¯liform Leibniz algebras arising from the naturally graded non Lie ¯liform Leibniz algebras. The isomorphism criteria and the list of algebraic invariants will be given. 2009 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/5700/1/A_FS_2009_6.pdf Obaiys, Sozan J. (2009) Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras. Masters thesis, Universiti Putra Malaysia. English
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
English
description Faculty: Science Let V be a vector space of dimension n over an algebraically closed ¯eld K (charK=0). Bilinear maps V £ V ! V form a vector space Hom(V ­ V; V ) of dimensional n3, which can be considered together with its natural structure of an a±ne algebraic variety over K and denoted by Algn(K) »= Kn3 . An n-dimensional algebra L over K can be considered as an element ¸(L) of Algn(K) via the bilinear mapping ¸ : L ­ L ! L de¯ning a binary algebraic operation on L : let fe1; e2; : : : ; eng be a basis of the algebra L: Then the table of multiplication of L is represented by point (°k ij) of this a±ne space as follows: ¸(ei; ej) = Xn k=1 °k ijek: Here °k ij are called structural constants of L: The linear reductive group GLn(K) acts on Algn(K) by (g ¤ ¸)(x; y) = g(¸(g¡1(x); g¡1(y)))(\transport of struc- ture"). Two algebra structures ¸1 and ¸2 on V are isomorphic if and only if they belong to the same orbit under this action.Recall that an algebra L over a ¯eld K is called a Leibniz algebra if its binary operation satis¯es the following Leibniz identity: [x; [y; z]] = [[x; y]; z] ¡ [[x; z]; y]; Leibniz algebras were introduced by J.-L.Loday. (For this reason, they have also been called \Loday algebras"). A skew-symmetric Leibniz algebra is a Lie algebra. In this case the Leibniz identity is just the Jacobi identity. This research is devoted to the classi¯cation problem of Leibn in low dimen- sional cases. There are two sources to get such a classi¯cation. The ¯rst of them is naturally graded non Lie ¯liform Leibniz algebras and another one is naturally graded ¯liform Lie algebras. Here we consider Leibniz algebras appearing from the naturally graded non Lie ¯liform Leibniz algebras. It is known that this class of algebras can be split into two subclasses. How- ever, isomorphisms within each class have not been investigated yet. Recently U.D.Bekbaev and I.S.Rakhimov suggested an approach to the isomorphism problem of Leibniz algebras based on algebraic invariants. This research presents an implementation of this invariant approach in 9- dimensional case. We give the list of all 9-dimensional non Lie ¯liform Leibniz algebras arising from the naturally graded non Lie ¯liform Leibniz algebras. The isomorphism criteria and the list of algebraic invariants will be given.
format Thesis
author Obaiys, Sozan J.
spellingShingle Obaiys, Sozan J.
Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras
author_facet Obaiys, Sozan J.
author_sort Obaiys, Sozan J.
title Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras
title_short Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras
title_full Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras
title_fullStr Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras
title_full_unstemmed Classification Of First Class 9-Dimensional Complex Filiform Leibniz Algebras
title_sort classification of first class 9-dimensional complex filiform leibniz algebras
publishDate 2009
url http://psasir.upm.edu.my/id/eprint/5700/1/A_FS_2009_6.pdf
http://psasir.upm.edu.my/id/eprint/5700/
_version_ 1643823267742482432