Improvement Of Discrimination Power And Weight Dispersion In Multi-Criteria Data Envelopment Analysis

Lack of discrimination power and poor weight dispersion remain major issues in Data Envelopment Analysis (DEA). Since the initial multiple criteria DEA (MCDEA) model developed in the late 1990s, only goal programming approaches; that is, the GPDEA-CCR and GPDEA-BCC were introduced for solving the...

Full description

Saved in:
Bibliographic Details
Main Author: Ghasemi, Mohammadreza
Format: Thesis
Language:English
Published: 2014
Subjects:
Online Access:http://eprints.usm.my/29018/1/IMPROVEMENT_OF_DISCRIMINATION_POWER_AND_WEIGHT_DISPERSION_IN_MULTI-CRITERIA_DATA_ENVELOPMENT_ANALSIS.pdf
http://eprints.usm.my/29018/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Sains Malaysia
Language: English
Description
Summary:Lack of discrimination power and poor weight dispersion remain major issues in Data Envelopment Analysis (DEA). Since the initial multiple criteria DEA (MCDEA) model developed in the late 1990s, only goal programming approaches; that is, the GPDEA-CCR and GPDEA-BCC were introduced for solving the said problems in a multi-objective framework. Kekurangan keupayaan mendiskriminasi dan kelemahan pengagihan pemberat kekal sebagai isu utama dalam Analisis Penyampulan Data (DEA). Semenjak model DEA berbilang kriteria (MCDEA) pertama yang dibentuk pada akhir tahun 1990an, hanya pendekatan pengaturcaraangol; yakni, GPDEA-CCR dan GPDEA-BCC telah diperkenalkan bagi menyelesaikan masalah berkenaan dalam konteks berbilang kriteria.