NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT

Service robots ; re prevailing in many industries to assis.: humans in c..md acing repetitive tasks, which require a natural interaction called Human Robot Interaction (HRI). In particular. nonverbal HRI plays an important role in social interactions, which highlights the need to accurately detect t...

Full description

Saved in:
Bibliographic Details
Main Authors: ADEL SOOMP, ZIJBAIR, SHANISUDIN, ABU UBAIDAH, NT ABD, RUZAIR, DRIAN, RAHEVI AMA, MOIED HALELI, AH
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:http://eprints.uthm.edu.my/8316/1/J15662_942c3ecbc3be675cdaa9744d7645b4b4.pdf
http://eprints.uthm.edu.my/8316/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Tun Hussein Onn Malaysia
Language: English
id my.uthm.eprints.8316
record_format eprints
spelling my.uthm.eprints.83162023-02-15T06:46:39Z http://eprints.uthm.edu.my/8316/ NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT ADEL SOOMP, ZIJBAIR SHANISUDIN, ABU UBAIDAH NT ABD, RUZAIR DRIAN, RAHEVI AMA MOIED HALELI, AH TA Engineering (General). Civil engineering (General) Service robots ; re prevailing in many industries to assis.: humans in c..md acing repetitive tasks, which require a natural interaction called Human Robot Interaction (HRI). In particular. nonverbal HRI plays an important role in social interactions, which highlights the need to accurately detect the subject's attention by evaluating the programmed cues. In this paper, a conceptual attentiveness model algorithm called attentive Recognition Model (ARM) is proposed to recognize a person's aii:ontiveness, which improves the of detection and subjective experience during nonverbal ARI using three combined detection models: face tracking, iris tracking and eye blinking. The face tracking model was trained using a Long Short-Term Memory (LSTM) neural network, which is based on deep learning. Meanwhile, the iris tracking and eye blinking use a mathematical model. The eye blinking model uses a random face landmark point to calculate the Eye Aspect Ratio (EAR), which is much more reliable compared to the prior method, which could detect a person blinking at a further distance even if the person was not blinking, The conducted experiments for face and iris tracking were able to detect direction up to 2 meters. Meanwhile, the tested eye blinking model gave an accuracy of 83.33% at up to 2 meters, The overall attentive accuracy of ARM was up to 85.7%. The experiments showed that the service robot was able to understand the programmed cues and hence perform certain tasks, such as approaching the interested person. Robot perkhidmatan lazim dalam banyak industri untuk membantu manusia menjalankan tugas berulang, yang memerlukan interaksi semula jadi yang dipanggil Interaksi Robot Manusia (HRI), Khususnya, HRI bukan lisan memainkan peranan penting dalam interaksi social, yang menonjolkan keperluan untuk mengesan perhatian subjek dengan tepat dengan menilai isyarat yang diprogramkan. Dalam makalah ini, algoritma model perhatian konseptual yang dipanggil Model Pengecaman Perhatian (ARM) dicadangkan untuk mengenali perhatian seseorang, yang meningkatkan ketepatan pengesanan dan pengalaman subjektif semasa HRI bukan lisan menggunakan tiga model pengesanan gabungan: pengesanan muka, pengesanan iris dan mata berkedip. . Model penjejakan muka telah dilatih menggunakan rangkaian saraf Memori Jangka Pendek Panjang (LSTM). yang berdasarkan pembelajaran mendalam. Manakala, pengesanan iris dan mata berkelip menggunakan model matematik. Model mata berkelip menggunakan titik mercu tanda muka rawak untuk mengira Nisbah Aspek Mata (EAR), yang jauh lebih dipercayai berbanding kaedah sebelunmya, yang boleti mengesan seseorang berkelip pada jarak yang lebih jauh walaupun orang itu tidak berkelip. Eksperimen yang dijalankan untuk pengesanan muka dan iris dapat mengesan arah sehingga 2 meter, Sementara itu, model berkelip mata yang diuji memberikan ketepatan 2023 Article PeerReviewed text en http://eprints.uthm.edu.my/8316/1/J15662_942c3ecbc3be675cdaa9744d7645b4b4.pdf ADEL SOOMP, ZIJBAIR and SHANISUDIN, ABU UBAIDAH and NT ABD, RUZAIR and DRIAN, RAHEVI AMA and MOIED HALELI, AH (2023) NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT. HUM Engineering Journal, 24 (1). haps:lidoi.org110.314361iiumej
institution Universiti Tun Hussein Onn Malaysia
building UTHM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tun Hussein Onn Malaysia
content_source UTHM Institutional Repository
url_provider http://eprints.uthm.edu.my/
language English
topic TA Engineering (General). Civil engineering (General)
spellingShingle TA Engineering (General). Civil engineering (General)
ADEL SOOMP, ZIJBAIR
SHANISUDIN, ABU UBAIDAH
NT ABD, RUZAIR
DRIAN, RAHEVI AMA
MOIED HALELI, AH
NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT
description Service robots ; re prevailing in many industries to assis.: humans in c..md acing repetitive tasks, which require a natural interaction called Human Robot Interaction (HRI). In particular. nonverbal HRI plays an important role in social interactions, which highlights the need to accurately detect the subject's attention by evaluating the programmed cues. In this paper, a conceptual attentiveness model algorithm called attentive Recognition Model (ARM) is proposed to recognize a person's aii:ontiveness, which improves the of detection and subjective experience during nonverbal ARI using three combined detection models: face tracking, iris tracking and eye blinking. The face tracking model was trained using a Long Short-Term Memory (LSTM) neural network, which is based on deep learning. Meanwhile, the iris tracking and eye blinking use a mathematical model. The eye blinking model uses a random face landmark point to calculate the Eye Aspect Ratio (EAR), which is much more reliable compared to the prior method, which could detect a person blinking at a further distance even if the person was not blinking, The conducted experiments for face and iris tracking were able to detect direction up to 2 meters. Meanwhile, the tested eye blinking model gave an accuracy of 83.33% at up to 2 meters, The overall attentive accuracy of ARM was up to 85.7%. The experiments showed that the service robot was able to understand the programmed cues and hence perform certain tasks, such as approaching the interested person. Robot perkhidmatan lazim dalam banyak industri untuk membantu manusia menjalankan tugas berulang, yang memerlukan interaksi semula jadi yang dipanggil Interaksi Robot Manusia (HRI), Khususnya, HRI bukan lisan memainkan peranan penting dalam interaksi social, yang menonjolkan keperluan untuk mengesan perhatian subjek dengan tepat dengan menilai isyarat yang diprogramkan. Dalam makalah ini, algoritma model perhatian konseptual yang dipanggil Model Pengecaman Perhatian (ARM) dicadangkan untuk mengenali perhatian seseorang, yang meningkatkan ketepatan pengesanan dan pengalaman subjektif semasa HRI bukan lisan menggunakan tiga model pengesanan gabungan: pengesanan muka, pengesanan iris dan mata berkedip. . Model penjejakan muka telah dilatih menggunakan rangkaian saraf Memori Jangka Pendek Panjang (LSTM). yang berdasarkan pembelajaran mendalam. Manakala, pengesanan iris dan mata berkelip menggunakan model matematik. Model mata berkelip menggunakan titik mercu tanda muka rawak untuk mengira Nisbah Aspek Mata (EAR), yang jauh lebih dipercayai berbanding kaedah sebelunmya, yang boleti mengesan seseorang berkelip pada jarak yang lebih jauh walaupun orang itu tidak berkelip. Eksperimen yang dijalankan untuk pengesanan muka dan iris dapat mengesan arah sehingga 2 meter, Sementara itu, model berkelip mata yang diuji memberikan ketepatan
format Article
author ADEL SOOMP, ZIJBAIR
SHANISUDIN, ABU UBAIDAH
NT ABD, RUZAIR
DRIAN, RAHEVI AMA
MOIED HALELI, AH
author_facet ADEL SOOMP, ZIJBAIR
SHANISUDIN, ABU UBAIDAH
NT ABD, RUZAIR
DRIAN, RAHEVI AMA
MOIED HALELI, AH
author_sort ADEL SOOMP, ZIJBAIR
title NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT
title_short NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT
title_full NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT
title_fullStr NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT
title_full_unstemmed NON-VERBAL HUMAN-ROBOT INTERACTION USING NEURAL NETWORK FOR THE APPLICATION OF SERVICE ROBOT
title_sort non-verbal human-robot interaction using neural network for the application of service robot
publishDate 2023
url http://eprints.uthm.edu.my/8316/1/J15662_942c3ecbc3be675cdaa9744d7645b4b4.pdf
http://eprints.uthm.edu.my/8316/
_version_ 1758580271103344640