A PSO-based model to increase the accuracy of software development effort estimation

Development effort is one of the most important metrics that must be estimated in order to design the plan of a project. The uncertainty and complexity of software projects make the process of effort estimation dif?cult and ambiguous. Analogy-based estimation (ABE) is the most common method in this...

Full description

Saved in:
Bibliographic Details
Main Authors: Bardsiri, Vahid Khatibi, Abang Jawawi, Dayang Norhayati, Mohd. Hashim, Siti Zaiton, Khatibi, Elham
Format: Article
Published: Springer Science+Business Media 2012
Subjects:
Online Access:http://eprints.utm.my/id/eprint/32774/
http://dx.doi.org/10.1007/s11219-012-9183-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.32774
record_format eprints
spelling my.utm.327742018-11-30T06:31:20Z http://eprints.utm.my/id/eprint/32774/ A PSO-based model to increase the accuracy of software development effort estimation Bardsiri, Vahid Khatibi Abang Jawawi, Dayang Norhayati Mohd. Hashim, Siti Zaiton Khatibi, Elham QA76 Computer software Development effort is one of the most important metrics that must be estimated in order to design the plan of a project. The uncertainty and complexity of software projects make the process of effort estimation dif?cult and ambiguous. Analogy-based estimation (ABE) is the most common method in this area because it is quite straightforward and practical, relying on comparison between new projects and completed projects to estimate the development effort. Despite many advantages, ABE is unable to produce accurate estimates when the importance level of project features is not the same or the relationship among features is dif?cult to determine. In such situations, ef?cient feature weighting can be a solution to improve the performance of ABE. This paper proposes a hybrid estimation model based on a combination of a particle swarm optimization (PSO) algorithm and ABE to increase the accuracy of software development effort estimation. This combination leads to accurate identi?cation of projects that are similar, based on optimizing the performance of the similarity function in ABE. A framework is presented in which the appropriate weights are allocated to project features so that the most accurate estimates are achieved. The suggested model is ?exible enough to be used in different datasets including categorical and non-categorical project features. Three real data sets are employed to evaluate the proposed model, and the results are compared with other estimation models. The promising results show that a combination of PSO and ABE could signi?cantly improve the performance of existing estimation models. Springer Science+Business Media 2012-09 Article PeerReviewed Bardsiri, Vahid Khatibi and Abang Jawawi, Dayang Norhayati and Mohd. Hashim, Siti Zaiton and Khatibi, Elham (2012) A PSO-based model to increase the accuracy of software development effort estimation. Software Quality Journal, 21 (3). pp. 1-26. ISSN 0963-9314(Print); 1573-1367(Electronic) http://dx.doi.org/10.1007/s11219-012-9183-x DOI:10.1007/s11219-012-9183-x
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
topic QA76 Computer software
spellingShingle QA76 Computer software
Bardsiri, Vahid Khatibi
Abang Jawawi, Dayang Norhayati
Mohd. Hashim, Siti Zaiton
Khatibi, Elham
A PSO-based model to increase the accuracy of software development effort estimation
description Development effort is one of the most important metrics that must be estimated in order to design the plan of a project. The uncertainty and complexity of software projects make the process of effort estimation dif?cult and ambiguous. Analogy-based estimation (ABE) is the most common method in this area because it is quite straightforward and practical, relying on comparison between new projects and completed projects to estimate the development effort. Despite many advantages, ABE is unable to produce accurate estimates when the importance level of project features is not the same or the relationship among features is dif?cult to determine. In such situations, ef?cient feature weighting can be a solution to improve the performance of ABE. This paper proposes a hybrid estimation model based on a combination of a particle swarm optimization (PSO) algorithm and ABE to increase the accuracy of software development effort estimation. This combination leads to accurate identi?cation of projects that are similar, based on optimizing the performance of the similarity function in ABE. A framework is presented in which the appropriate weights are allocated to project features so that the most accurate estimates are achieved. The suggested model is ?exible enough to be used in different datasets including categorical and non-categorical project features. Three real data sets are employed to evaluate the proposed model, and the results are compared with other estimation models. The promising results show that a combination of PSO and ABE could signi?cantly improve the performance of existing estimation models.
format Article
author Bardsiri, Vahid Khatibi
Abang Jawawi, Dayang Norhayati
Mohd. Hashim, Siti Zaiton
Khatibi, Elham
author_facet Bardsiri, Vahid Khatibi
Abang Jawawi, Dayang Norhayati
Mohd. Hashim, Siti Zaiton
Khatibi, Elham
author_sort Bardsiri, Vahid Khatibi
title A PSO-based model to increase the accuracy of software development effort estimation
title_short A PSO-based model to increase the accuracy of software development effort estimation
title_full A PSO-based model to increase the accuracy of software development effort estimation
title_fullStr A PSO-based model to increase the accuracy of software development effort estimation
title_full_unstemmed A PSO-based model to increase the accuracy of software development effort estimation
title_sort pso-based model to increase the accuracy of software development effort estimation
publisher Springer Science+Business Media
publishDate 2012
url http://eprints.utm.my/id/eprint/32774/
http://dx.doi.org/10.1007/s11219-012-9183-x
_version_ 1643649136991404032