Planar electromagnetic sensors array for nitrate and sulphate detection

This work expounds the development of three types of sensor arrays based on planar electromagnetic for environmental monitoring. Three types of sensor array are proposed: parallel, star, and delta. The modeling and simulation of all types of sensor array have been carried out to calculate the sensor...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamad Nor, Alif Syarafi
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.utm.my/id/eprint/48921/25/AlifSyarafiMFKE2015.pdf
http://eprints.utm.my/id/eprint/48921/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:85030
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
id my.utm.48921
record_format eprints
spelling my.utm.489212020-07-08T01:24:07Z http://eprints.utm.my/id/eprint/48921/ Planar electromagnetic sensors array for nitrate and sulphate detection Mohamad Nor, Alif Syarafi TK Electrical engineering. Electronics Nuclear engineering This work expounds the development of three types of sensor arrays based on planar electromagnetic for environmental monitoring. Three types of sensor array are proposed: parallel, star, and delta. The modeling and simulation of all types of sensor array have been carried out to calculate the sensor’s impedance value. The contamination state has been simulated by altering the electrical property values of the environment at the model subdomain to represent water contamination. The simulation results agree with the experimental trends. The star array configuration shows the highest simulated inductance and capacitance responses with the best signal strength and sensitivity. Moreover, experiments have been conducted to determine the relationship between sensor’s impedance and water contamination due to nitrate and sulphate. The sensors have been tested with added distilled water with different concentrations of nitrate and sulphate to observe the system performance. Experimental results show that the best sensor is the star array planar electromagnetic sensor. Artificial Neural Networks (ANN) is used to classify different levels of nitrate and sulphate contaminations in water sources. The impedance of star array planar electromagnetic sensors was derived to decompose by Wavelet Transform (WT). Classification of WT has been applied to extract output signal features. These features are fed into ANN to classify different nitrate and sulphate concentration levels in water. The model is capable of distinguishing contaminants concentration level in the presence of other types of contaminants with a Root Mean Square Error (RMSE) of 0.0132 with 98.68% accuracy. 2015-02 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/id/eprint/48921/25/AlifSyarafiMFKE2015.pdf Mohamad Nor, Alif Syarafi (2015) Planar electromagnetic sensors array for nitrate and sulphate detection. Masters thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:85030
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
language English
topic TK Electrical engineering. Electronics Nuclear engineering
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Mohamad Nor, Alif Syarafi
Planar electromagnetic sensors array for nitrate and sulphate detection
description This work expounds the development of three types of sensor arrays based on planar electromagnetic for environmental monitoring. Three types of sensor array are proposed: parallel, star, and delta. The modeling and simulation of all types of sensor array have been carried out to calculate the sensor’s impedance value. The contamination state has been simulated by altering the electrical property values of the environment at the model subdomain to represent water contamination. The simulation results agree with the experimental trends. The star array configuration shows the highest simulated inductance and capacitance responses with the best signal strength and sensitivity. Moreover, experiments have been conducted to determine the relationship between sensor’s impedance and water contamination due to nitrate and sulphate. The sensors have been tested with added distilled water with different concentrations of nitrate and sulphate to observe the system performance. Experimental results show that the best sensor is the star array planar electromagnetic sensor. Artificial Neural Networks (ANN) is used to classify different levels of nitrate and sulphate contaminations in water sources. The impedance of star array planar electromagnetic sensors was derived to decompose by Wavelet Transform (WT). Classification of WT has been applied to extract output signal features. These features are fed into ANN to classify different nitrate and sulphate concentration levels in water. The model is capable of distinguishing contaminants concentration level in the presence of other types of contaminants with a Root Mean Square Error (RMSE) of 0.0132 with 98.68% accuracy.
format Thesis
author Mohamad Nor, Alif Syarafi
author_facet Mohamad Nor, Alif Syarafi
author_sort Mohamad Nor, Alif Syarafi
title Planar electromagnetic sensors array for nitrate and sulphate detection
title_short Planar electromagnetic sensors array for nitrate and sulphate detection
title_full Planar electromagnetic sensors array for nitrate and sulphate detection
title_fullStr Planar electromagnetic sensors array for nitrate and sulphate detection
title_full_unstemmed Planar electromagnetic sensors array for nitrate and sulphate detection
title_sort planar electromagnetic sensors array for nitrate and sulphate detection
publishDate 2015
url http://eprints.utm.my/id/eprint/48921/25/AlifSyarafiMFKE2015.pdf
http://eprints.utm.my/id/eprint/48921/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:85030
_version_ 1674066135194009600