Vibration of Antisymmetric Angle-Ply Laminated Plates of Higher-Order Theory with Variable Thickness

Free vibration of antisymmetric angle-ply laminated plates with variable thickness is studied. Higher-order shear deformation plate theory (HSDT) is introduced in the present method to remove the shear correction factors and improve the accuracy of transverse shear stresses. The thickness variations...

Full description

Saved in:
Bibliographic Details
Main Authors: Hafizah, A. K. N., Lee, J. H., Aziz, Z. A., Viswanathan, K. K.
Format: Article
Published: Hindawi Limited 2018
Subjects:
Online Access:http://eprints.utm.my/id/eprint/79940/
http://dx.doi.org/ 10.1155/2018/7323628
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Description
Summary:Free vibration of antisymmetric angle-ply laminated plates with variable thickness is studied. Higher-order shear deformation plate theory (HSDT) is introduced in the present method to remove the shear correction factors and improve the accuracy of transverse shear stresses. The thickness variations are assumed to be linear, exponential, and sinusoidal. The coupled differential equations are obtained in terms of displacement and rotational functions and approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically by employing the eigensolution techniques with eigenvectors as spline coefficients to obtain the required frequencies. The results of numerical calculations are presented for laminated plates with simply supported boundary conditions. Comparisons of the current solutions and those reported in literature are provided to verify the accuracy of the proposed method. The effects of aspect ratio, number of layers, ply-angles, side-to-thickness ratio, and materials on the free vibration of cylindrical plates are discussed in detail.