A review on computational approaches of biclustering algorithms for biological data analysis

Saved in:
Bibliographic Details
Main Author: Chan Weng Howe, Rohani Mohammad Kusairi
Format: Article
Published: 2018
Online Access:http://eprints.utm.my/id/eprint/83425/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
id my.utm.83425
record_format eprints
spelling my.utm.834252019-10-24T03:57:41Z http://eprints.utm.my/id/eprint/83425/ A review on computational approaches of biclustering algorithms for biological data analysis Chan Weng Howe, Rohani Mohammad Kusairi 2018 Article NonPeerReviewed Chan Weng Howe, Rohani Mohammad Kusairi (2018) A review on computational approaches of biclustering algorithms for biological data analysis. UTM COMPUTING PROCEEDINGS INNOVATIONS IN COMPUTING TECHNOLOGY AND APPLICATIONS .
institution Universiti Teknologi Malaysia
building UTM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Malaysia
content_source UTM Institutional Repository
url_provider http://eprints.utm.my/
format Article
author Chan Weng Howe, Rohani Mohammad Kusairi
spellingShingle Chan Weng Howe, Rohani Mohammad Kusairi
A review on computational approaches of biclustering algorithms for biological data analysis
author_facet Chan Weng Howe, Rohani Mohammad Kusairi
author_sort Chan Weng Howe, Rohani Mohammad Kusairi
title A review on computational approaches of biclustering algorithms for biological data analysis
title_short A review on computational approaches of biclustering algorithms for biological data analysis
title_full A review on computational approaches of biclustering algorithms for biological data analysis
title_fullStr A review on computational approaches of biclustering algorithms for biological data analysis
title_full_unstemmed A review on computational approaches of biclustering algorithms for biological data analysis
title_sort review on computational approaches of biclustering algorithms for biological data analysis
publishDate 2018
url http://eprints.utm.my/id/eprint/83425/
_version_ 1651866702805204992