The energy of cayley graphs for a generating subset of the dihedral groups

Let G be a finite group and S be a subset of G where S does not include the identity of G and is inverse closed. A Cayley graph of a group G with respect to the subset S is a graph where its vertices are the elements of G and two vertices a and b are connected if ab^(−1) is in the subset S. The ener...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad Fadzil, Amira Fadina, Sarmin, Nor Haniza, Erfanian, Ahmad
Format: Article
Language:English
Published: Penerbit UTM Press 2019
Subjects:
Online Access:http://eprints.utm.my/id/eprint/89553/1/NorHanizaSarmin2019_TheEnergyofCayleyGraphsforaGeneratingSubset.pdf
http://eprints.utm.my/id/eprint/89553/
http://dx.doi.org/10.11113/matematika.v35.n3.1115
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Language: English
Description
Summary:Let G be a finite group and S be a subset of G where S does not include the identity of G and is inverse closed. A Cayley graph of a group G with respect to the subset S is a graph where its vertices are the elements of G and two vertices a and b are connected if ab^(−1) is in the subset S. The energy of a Cayley graph is the sum of all absolute values of the eigenvalues of its adjacency matrix. In this paper, we consider a specific subset S = {b, ab, . . . , a^(n−1)b} for dihedral group of order 2n, where n is greater or equal to 3 and find the Cayley graph with respect to the set. We also calculate the eigenvalues and compute the energy of the respected Cayley graphs. Finally, the generalization of the energy of the respected Cayley graphs is found.