Potential effects of microorganism to reducebuilding defects in Malaysia

Over the last few years, building defects is major concern in Malaysian construction industry. Design mistake or building flaw define as a defect which reduces building value and make a hazardous situation. A Building defect arises due to various reason, such as low handiwork or the use of adherent...

Full description

Saved in:
Bibliographic Details
Main Authors: Islam, Monirul, Mohamed, Sarajul Fikri, Adeniyi, Shogo Musbau, Ahmed M., Alghamdi Khalid, Abdullah Saeed, Karban
Format: Article
Published: Blue Eyes Intelligence Engineering & Sciences Publication 2020
Subjects:
Online Access:http://eprints.utm.my/id/eprint/93705/
http://dx.doi.org/10.35940/ijrte.E4968.018520
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Malaysia
Description
Summary:Over the last few years, building defects is major concern in Malaysian construction industry. Design mistake or building flaw define as a defect which reduces building value and make a hazardous situation. A Building defect arises due to various reason, such as low handiwork or the use of adherent components, climatic construction, and faulty design. Building defects never emerge to have been minimized in contempt of new improvement in building technology. Defective building construction contributes both final cost of the product and cost of maintenance, which can be generous. By using effective microorganism (EM) in concrete building defects such as surface cracks, fatigue cracks and thermal contraction can be reduced significantly. Previous works in Japan and Malaysia found that effective in agriculture microorganism makes it possible increasing crop yields to twice or three times what they are at present to do so without the agricultural chemicals or artificial fertilizers, 5% of EM mixed into the concrete the tensile, compressive and flexural strength were 25.23%, 143.90% and 19.17% that are compared to design compressive strength that signify improve the concrete strength and durability. By using 25% EM in concrete the tensile strength was higher than the lower dosage. From the previous study, fermentation is the main notion in EMC in which the process will not produce detrimental texture. The research was carried out to investigate the potential usage of effective microorganism and its application in concrete that can help to reduce the building defects and improve building strength and durability. It was observed that most cost-effective and maximum percentage of EM mixed into the concrete is 5% in which enhancing its compressive, tensile and flexural strength.