Effects of phase separation behavior on morphology and performance of polycarbonate membranes

The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characte...

Full description

Saved in:
Bibliographic Details
Main Authors: Idris, A., Man, Z., Maulud, A.S., Khan, M.S.
Format: Article
Published: MDPI AG 2017
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018285943&doi=10.3390%2fmembranes7020021&partnerID=40&md5=14b2ac9266fdf44b52e04db7b70707eb
http://eprints.utp.edu.my/19470/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id my.utp.eprints.19470
record_format eprints
spelling my.utp.eprints.194702018-04-20T05:59:26Z Effects of phase separation behavior on morphology and performance of polycarbonate membranes Idris, A. Man, Z. Maulud, A.S. Khan, M.S. The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18 and 9.17 decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications. © 2017 by the authors. Licensee MDPI, Basel, Switzerland. MDPI AG 2017 Article PeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018285943&doi=10.3390%2fmembranes7020021&partnerID=40&md5=14b2ac9266fdf44b52e04db7b70707eb Idris, A. and Man, Z. and Maulud, A.S. and Khan, M.S. (2017) Effects of phase separation behavior on morphology and performance of polycarbonate membranes. Membranes, 7 (2). http://eprints.utp.edu.my/19470/
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18 and 9.17 decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.
format Article
author Idris, A.
Man, Z.
Maulud, A.S.
Khan, M.S.
spellingShingle Idris, A.
Man, Z.
Maulud, A.S.
Khan, M.S.
Effects of phase separation behavior on morphology and performance of polycarbonate membranes
author_facet Idris, A.
Man, Z.
Maulud, A.S.
Khan, M.S.
author_sort Idris, A.
title Effects of phase separation behavior on morphology and performance of polycarbonate membranes
title_short Effects of phase separation behavior on morphology and performance of polycarbonate membranes
title_full Effects of phase separation behavior on morphology and performance of polycarbonate membranes
title_fullStr Effects of phase separation behavior on morphology and performance of polycarbonate membranes
title_full_unstemmed Effects of phase separation behavior on morphology and performance of polycarbonate membranes
title_sort effects of phase separation behavior on morphology and performance of polycarbonate membranes
publisher MDPI AG
publishDate 2017
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018285943&doi=10.3390%2fmembranes7020021&partnerID=40&md5=14b2ac9266fdf44b52e04db7b70707eb
http://eprints.utp.edu.my/19470/
_version_ 1738656074715627520