Solar desalination system with a focal point concentrator using different nanofluids
In the current study, a solar desalination system was energetically and exegetically investigated using a focal point concentrator as the heat source of the desalination system. The desalination system consisted of photovoltaic thermal (PV) panels and Humidification Dehumidification Desalination (HD...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Elsevier Ltd
2020
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082866692&doi=10.1016%2fj.applthermaleng.2020.115058&partnerID=40&md5=a8ab39ff5965b5ed20e038632d9e60e0 http://eprints.utp.edu.my/23411/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Petronas |
id |
my.utp.eprints.23411 |
---|---|
record_format |
eprints |
spelling |
my.utp.eprints.234112021-08-19T07:22:33Z Solar desalination system with a focal point concentrator using different nanofluids Rafiei, A. Loni, R. Mahadzir, S.B. Najafi, G. Pavlovic, S. Bellos, E. In the current study, a solar desalination system was energetically and exegetically investigated using a focal point concentrator as the heat source of the desalination system. The desalination system consisted of photovoltaic thermal (PV) panels and Humidification Dehumidification Desalination (HDD) systems. The effect of nanofluid application as the solar working fluid on the desalination performance was investigated as the main objective of this study. Optical and thermal analyses of the solar desalination system were conducted by SolTrace and Maple software, respectively, whereas exergy analysis of the solar desalination system was performed by writing codes in the Maple software. Different oil-based nanofluids were used as the solar working fluids including Al2O3/oil, Cu/oil, CuO/oil, TiO2/oil and MWCNT/oil. Also, the influence of different PV-HDD parameters including water flow rate and water to air flow ratio was considered on the performance of the solar desalination system. The results revealed that the cavity heat gain and thermal efficiency increased with increasing nanofluid concentration for all of the investigated nanofluids. Also, the Cu/oil nanofluid showed the highest thermal performance among all of the nanofluids. Exergy gain and exergy efficiency of the investigated solar system decreased with increasing nanofluid concentration. Moreover, the Cu/oil nanofluid resulted in the lowest exergy efficiency compared to other investigated nanofluids. The application of the Cu/oil nanofluid with higher nanofluid concentration can be suggested for producing the highest amount of the freshwater production, and the lowest gain output ratio of the desalination system. © 2020 Elsevier Ltd Elsevier Ltd 2020 Article NonPeerReviewed https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082866692&doi=10.1016%2fj.applthermaleng.2020.115058&partnerID=40&md5=a8ab39ff5965b5ed20e038632d9e60e0 Rafiei, A. and Loni, R. and Mahadzir, S.B. and Najafi, G. and Pavlovic, S. and Bellos, E. (2020) Solar desalination system with a focal point concentrator using different nanofluids. Applied Thermal Engineering, 174 . http://eprints.utp.edu.my/23411/ |
institution |
Universiti Teknologi Petronas |
building |
UTP Resource Centre |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknologi Petronas |
content_source |
UTP Institutional Repository |
url_provider |
http://eprints.utp.edu.my/ |
description |
In the current study, a solar desalination system was energetically and exegetically investigated using a focal point concentrator as the heat source of the desalination system. The desalination system consisted of photovoltaic thermal (PV) panels and Humidification Dehumidification Desalination (HDD) systems. The effect of nanofluid application as the solar working fluid on the desalination performance was investigated as the main objective of this study. Optical and thermal analyses of the solar desalination system were conducted by SolTrace and Maple software, respectively, whereas exergy analysis of the solar desalination system was performed by writing codes in the Maple software. Different oil-based nanofluids were used as the solar working fluids including Al2O3/oil, Cu/oil, CuO/oil, TiO2/oil and MWCNT/oil. Also, the influence of different PV-HDD parameters including water flow rate and water to air flow ratio was considered on the performance of the solar desalination system. The results revealed that the cavity heat gain and thermal efficiency increased with increasing nanofluid concentration for all of the investigated nanofluids. Also, the Cu/oil nanofluid showed the highest thermal performance among all of the nanofluids. Exergy gain and exergy efficiency of the investigated solar system decreased with increasing nanofluid concentration. Moreover, the Cu/oil nanofluid resulted in the lowest exergy efficiency compared to other investigated nanofluids. The application of the Cu/oil nanofluid with higher nanofluid concentration can be suggested for producing the highest amount of the freshwater production, and the lowest gain output ratio of the desalination system. © 2020 Elsevier Ltd |
format |
Article |
author |
Rafiei, A. Loni, R. Mahadzir, S.B. Najafi, G. Pavlovic, S. Bellos, E. |
spellingShingle |
Rafiei, A. Loni, R. Mahadzir, S.B. Najafi, G. Pavlovic, S. Bellos, E. Solar desalination system with a focal point concentrator using different nanofluids |
author_facet |
Rafiei, A. Loni, R. Mahadzir, S.B. Najafi, G. Pavlovic, S. Bellos, E. |
author_sort |
Rafiei, A. |
title |
Solar desalination system with a focal point concentrator using different nanofluids |
title_short |
Solar desalination system with a focal point concentrator using different nanofluids |
title_full |
Solar desalination system with a focal point concentrator using different nanofluids |
title_fullStr |
Solar desalination system with a focal point concentrator using different nanofluids |
title_full_unstemmed |
Solar desalination system with a focal point concentrator using different nanofluids |
title_sort |
solar desalination system with a focal point concentrator using different nanofluids |
publisher |
Elsevier Ltd |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082866692&doi=10.1016%2fj.applthermaleng.2020.115058&partnerID=40&md5=a8ab39ff5965b5ed20e038632d9e60e0 http://eprints.utp.edu.my/23411/ |
_version_ |
1738656468206354432 |