Selective Image Segmentation Models Using Three Distance Functions

Image segmentation can be defined as partitioning an image that contains multiple segments of meaningful parts for further processing. Global segmentation is concerned with segmenting the whole object of an observed image. Meanwhile, the selective segmentation model is concerned with segmenting a sp...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdullah, Siti Aminah, Jumaat, Abdul Kadir
Format: Article
Language:English
Published: Universiti Utara Malaysia Press 2022
Subjects:
Online Access:https://repo.uum.edu.my/id/eprint/28754/1/JICT%2021%2001%202022%2095-116.pdf
https://repo.uum.edu.my/id/eprint/28754/
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Utara Malaysia
Language: English
id my.uum.repo.28754
record_format eprints
spelling my.uum.repo.287542023-02-01T00:38:47Z https://repo.uum.edu.my/id/eprint/28754/ Selective Image Segmentation Models Using Three Distance Functions Abdullah, Siti Aminah Jumaat, Abdul Kadir QA75 Electronic computers. Computer science Image segmentation can be defined as partitioning an image that contains multiple segments of meaningful parts for further processing. Global segmentation is concerned with segmenting the whole object of an observed image. Meanwhile, the selective segmentation model is concerned with segmenting a specific object required to be extracted. The Convex Distance Selective Segmentation (CDSS) model, which uses the Euclidean distance function as the fitting term, was proposed in 2015. However, the Euclidean distance function takes time to compute. This paper proposes the reformulation of the CDSS minimization problem by changing the fitting term with three popular distance functions, namely Chessboard, City Block, and Quasi-Euclidean. The proposed models are CDSSNEW1, CDSSNEW2, and CDSSNEW3, which apply the Chessboard, City Block, and Quasi-Euclidean distance functions respectively. In this study, the Euler-Lagrange (EL) equations of the proposed models were derived and solved using the Additive Operator Splitting method. Then, MATLAB coding was developed to implement the proposed models. The accuracy of the segmented image was evaluated using the Jaccard (JSC) and Dice Similarity Coefficients (DSC). The execution time was recorded to measure the efficiency of the models. Numerical results showed that the proposed CDSSNEW1 model based on the Chessboard distance function could segment the specific object successfully for all grayscale images with the fastest execution time compared to other models. Universiti Utara Malaysia Press 2022 Article PeerReviewed application/pdf en cc4_by https://repo.uum.edu.my/id/eprint/28754/1/JICT%2021%2001%202022%2095-116.pdf Abdullah, Siti Aminah and Jumaat, Abdul Kadir (2022) Selective Image Segmentation Models Using Three Distance Functions. Journal of Information and Communication Technology, 21 (01). pp. 95-116. ISSN 2180-3862
institution Universiti Utara Malaysia
building UUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Utara Malaysia
content_source UUM Institutional Repository
url_provider http://repo.uum.edu.my/
language English
topic QA75 Electronic computers. Computer science
spellingShingle QA75 Electronic computers. Computer science
Abdullah, Siti Aminah
Jumaat, Abdul Kadir
Selective Image Segmentation Models Using Three Distance Functions
description Image segmentation can be defined as partitioning an image that contains multiple segments of meaningful parts for further processing. Global segmentation is concerned with segmenting the whole object of an observed image. Meanwhile, the selective segmentation model is concerned with segmenting a specific object required to be extracted. The Convex Distance Selective Segmentation (CDSS) model, which uses the Euclidean distance function as the fitting term, was proposed in 2015. However, the Euclidean distance function takes time to compute. This paper proposes the reformulation of the CDSS minimization problem by changing the fitting term with three popular distance functions, namely Chessboard, City Block, and Quasi-Euclidean. The proposed models are CDSSNEW1, CDSSNEW2, and CDSSNEW3, which apply the Chessboard, City Block, and Quasi-Euclidean distance functions respectively. In this study, the Euler-Lagrange (EL) equations of the proposed models were derived and solved using the Additive Operator Splitting method. Then, MATLAB coding was developed to implement the proposed models. The accuracy of the segmented image was evaluated using the Jaccard (JSC) and Dice Similarity Coefficients (DSC). The execution time was recorded to measure the efficiency of the models. Numerical results showed that the proposed CDSSNEW1 model based on the Chessboard distance function could segment the specific object successfully for all grayscale images with the fastest execution time compared to other models.
format Article
author Abdullah, Siti Aminah
Jumaat, Abdul Kadir
author_facet Abdullah, Siti Aminah
Jumaat, Abdul Kadir
author_sort Abdullah, Siti Aminah
title Selective Image Segmentation Models Using Three Distance Functions
title_short Selective Image Segmentation Models Using Three Distance Functions
title_full Selective Image Segmentation Models Using Three Distance Functions
title_fullStr Selective Image Segmentation Models Using Three Distance Functions
title_full_unstemmed Selective Image Segmentation Models Using Three Distance Functions
title_sort selective image segmentation models using three distance functions
publisher Universiti Utara Malaysia Press
publishDate 2022
url https://repo.uum.edu.my/id/eprint/28754/1/JICT%2021%2001%202022%2095-116.pdf
https://repo.uum.edu.my/id/eprint/28754/
_version_ 1756687042783215616