The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System
Dengue is a harmful tropical disease that causes death to many people. Currently, the dengue vaccine development is still at an early stage, and only intervention methods exist after dengue cases increase. Thus, previously, two scientific experimental field studies were conducted in producing a deng...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
2022
|
Subjects: | |
Online Access: | https://repo.uum.edu.my/id/eprint/30987/1/IDM%2007%2003%202022%20510-525.pdf https://repo.uum.edu.my/id/eprint/30987/ https://www.keaipublishing.com/idm |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Utara Malaysia |
Language: | English |
id |
my.uum.repo.30987 |
---|---|
record_format |
eprints |
spelling |
my.uum.repo.309872024-07-04T03:30:09Z https://repo.uum.edu.my/id/eprint/30987/ The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System Ismail, Suzilah Fildes, Robert Ahmad, Rohani Wan Mohamad Ali, Wan Najdah Omar, Topek QA Mathematics Dengue is a harmful tropical disease that causes death to many people. Currently, the dengue vaccine development is still at an early stage, and only intervention methods exist after dengue cases increase. Thus, previously, two scientific experimental field studies were conducted in producing a dengue outbreak forecasting model as an early warning system. Successfully, an Autoregressive Distributed Lag (ADL) Model was developed using three factors: the epidemiological, entomological, and environmental with an accuracy of 85%; but a higher percentage is required in minimizing the error for the model to be useful. Hence, this study aimed to develop a practical and cost-effective dengue outbreak forecasting model with at least 90% accuracy to be embedded in an early warning computer system using the Internet of Things (IoT) approach. Eighty-one weeks of time series data of the three factors were used in six forecasting models, which were Autoregressive Distributed Lag (ADL), Hierarchical Forecasting (Bottom-up and Optimal combination) and three Machine Learning methods: (Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest). Five error measures were used to evaluate the consistency performance of the models in order to ensure model performance. The findings indicated Random Forest outperformed the other models with an accuracy of 95% when including all three factors. But practically, collecting mosquito related data (the entomological factor) was very costly and time consuming. Thus, it was removed from the model, and the accuracy dropped to 92% but still high enough to be of practical use, i.e., beyond 90%. However, the practical ground operationalization of the early warning system also requires several rain gauges to be located at the dengue hot spots due to localized rainfall. Hence, further analysis was conducted in determining the location of the rain gauges. This has led to the recommendation that the rain gauges should be located about 3e4 km apart at the dengue hot spots to ensure the accuracy of the rainfall data to be included in the dengue outbreak forecasting model so that it can be embedded in the early warning system. Therefore, this early warning system can save lives, and prevention is better than cure Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 2022 Article PeerReviewed application/pdf en cc4_by_nc_nd https://repo.uum.edu.my/id/eprint/30987/1/IDM%2007%2003%202022%20510-525.pdf Ismail, Suzilah and Fildes, Robert and Ahmad, Rohani and Wan Mohamad Ali, Wan Najdah and Omar, Topek (2022) The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System. Infectious Disease Modelling, 7 (3). pp. 510-525. ISSN 2468-0427 https://www.keaipublishing.com/idm |
institution |
Universiti Utara Malaysia |
building |
UUM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Utara Malaysia |
content_source |
UUM Institutional Repository |
url_provider |
http://repo.uum.edu.my/ |
language |
English |
topic |
QA Mathematics |
spellingShingle |
QA Mathematics Ismail, Suzilah Fildes, Robert Ahmad, Rohani Wan Mohamad Ali, Wan Najdah Omar, Topek The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System |
description |
Dengue is a harmful tropical disease that causes death to many people. Currently, the dengue vaccine development is still at an early stage, and only intervention methods exist after dengue cases increase. Thus, previously, two scientific experimental field studies were conducted in producing a dengue outbreak forecasting model as an early warning system. Successfully, an Autoregressive Distributed Lag (ADL) Model was developed using three factors: the epidemiological, entomological, and environmental with an accuracy of 85%; but a higher percentage is required in minimizing the error for the model to be useful. Hence, this study aimed to develop a practical and cost-effective dengue outbreak forecasting model with at least 90% accuracy to be embedded in an early warning computer system using the Internet of Things (IoT) approach. Eighty-one weeks of time series data of the three factors were used in six forecasting models, which were Autoregressive Distributed Lag (ADL), Hierarchical Forecasting (Bottom-up and Optimal combination) and three Machine Learning methods: (Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest). Five error measures were used to evaluate the consistency performance of the models in order to ensure model performance. The findings indicated Random Forest outperformed the other models with an accuracy of 95% when
including all three factors. But practically, collecting mosquito related data (the entomological factor) was very costly and time consuming. Thus, it was removed from the model, and the accuracy dropped to 92% but still high enough to be of practical use, i.e., beyond 90%. However, the practical ground operationalization of the early warning system also requires several rain gauges to be located at the dengue hot spots due to localized rainfall. Hence, further analysis was conducted in determining the location of the rain gauges. This has led to the recommendation that the rain gauges should be located about 3e4 km apart at the dengue hot spots to ensure the accuracy of the rainfall data to be included in the dengue outbreak forecasting model so that it can be embedded in the early warning system. Therefore, this early warning system can save lives, and prevention is better than cure |
format |
Article |
author |
Ismail, Suzilah Fildes, Robert Ahmad, Rohani Wan Mohamad Ali, Wan Najdah Omar, Topek |
author_facet |
Ismail, Suzilah Fildes, Robert Ahmad, Rohani Wan Mohamad Ali, Wan Najdah Omar, Topek |
author_sort |
Ismail, Suzilah |
title |
The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System |
title_short |
The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System |
title_full |
The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System |
title_fullStr |
The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System |
title_full_unstemmed |
The Practicality of Malaysia Dengue Outbreak Forecasting Model as an Early Warning System |
title_sort |
practicality of malaysia dengue outbreak forecasting model as an early warning system |
publisher |
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. |
publishDate |
2022 |
url |
https://repo.uum.edu.my/id/eprint/30987/1/IDM%2007%2003%202022%20510-525.pdf https://repo.uum.edu.my/id/eprint/30987/ https://www.keaipublishing.com/idm |
_version_ |
1804069251413180416 |