Hyperbolic cross approximation in infinite dimensions

We give tight upper and lower bounds of the cardinality of the index sets of certain hyperbolic crosses which reflect mixed Sobolev–Korobov-type smoothness and mixed Sobolev-analytic-type smoothness in the infinite-dimensional case where specific summability properties of the smoothness indices are...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Dinh Dũng , Michael Griebel
التنسيق: كتاب Book chapter Dataset
منشور في: Journal of Complexity 2016
الموضوعات:
الوصول للمادة أونلاين:http://repository.vnu.edu.vn/handle/VNU_123/11116
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Vietnam National University, Hanoi
الوصف
الملخص:We give tight upper and lower bounds of the cardinality of the index sets of certain hyperbolic crosses which reflect mixed Sobolev–Korobov-type smoothness and mixed Sobolev-analytic-type smoothness in the infinite-dimensional case where specific summability properties of the smoothness indices are fulfilled. These estimates are then applied to the linear approximation of functions from the associated spaces in terms of the ε-dimension of their unit balls. Here, the approximation is based on linear information. Such function spaces appear for example for the solution of parametric and stochastic PDEs. The obtained upper and lower bounds of the approximation error as well as of the associated ε-complexities are completely independent of any parametric or stochastic dimension. Moreover, the rates are independent of the parameters which define the smoothness properties of the infinite-variate parametric or stochastic part of the solution. These parameters are only contained in the order constants. This way, linear approximation theory becomes possible in the infinite-dimensional case and corresponding infinite-dimensional problems get tractable.