Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square
We prove lower bounds for the error of optimal cubature formulae for d-variate functions from Besov spaces of mixed smoothness in the case , and , where is either the d-dimensional torus or the d-dimensional unit cube . In addition, we prove upper bounds for QMC integration on the Fibonacc...
Saved in:
主要作者: | Dinh Dũng, Tino Ullrich |
---|---|
格式: | 圖書 Book chapter Dataset |
出版: |
Mathematische Nachrichten
2016
|
主題: | |
在線閱讀: | http://repository.vnu.edu.vn/handle/VNU_123/11183 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness
由: Dinh Dũng
出版: (2016) -
Multivariate approximation by translates of the Korobov function on Smolyak grids
由: Dinh Dũng, Charles A. Micchelli
出版: (2016) -
Continuous algorithms in adaptive sampling recovery
由: Dinh Dũng
出版: (2016) -
The Existence of Good Extensible Polynomial Lattice Rules
由: Niederreiter, H.
出版: (2014) -
The existence of good extensible rank-1 lattices
由: Hickernell, F.J., et al.
出版: (2014)