Tính ổn định của một lớp các hệ chuyển mạch tuyến tính trên thang thời gian

Chương 1: Kiến thức chuẩn bị. Nội dung của Chương 1 gồm năm phần: - Phần 1 trình bày khái niệm thang thời gian và các khái niệm liên quan và các ví dụ, khái niệm -đạo hàm, tích phân, các tính chất và ví dụ. - Phần 2 nêu định nghĩa hàm hồi quy, hàm mũ suy rộng trên thang thời gian, các tính chất v...

全面介紹

Saved in:
書目詳細資料
主要作者: Phùng, Hải Minh
其他作者: Đỗ, Đức Thuận
格式: Theses and Dissertations
語言:Vietnamese
出版: H. : Trường Đại học Khoa học tự nhiên 2018
主題:
在線閱讀:http://repository.vnu.edu.vn/handle/VNU_123/62249
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Chương 1: Kiến thức chuẩn bị. Nội dung của Chương 1 gồm năm phần: - Phần 1 trình bày khái niệm thang thời gian và các khái niệm liên quan và các ví dụ, khái niệm -đạo hàm, tích phân, các tính chất và ví dụ. - Phần 2 nêu định nghĩa hàm hồi quy, hàm mũ suy rộng trên thang thời gian, các tính chất và ví dụ. - Phần 3 đưa ra khái niệm hệ động lực tổng quát, khái niệm tính ổn định mũ, ổn định mũ đều, định lý về điều kiện kiểm tra tính ổn định của hệ động lực tuyến tính, khái niệm đường tròn Hilger. - Phần 4 nêu khái niệm hệ chuyển mạch tổng quát, khái niệm tính ổn định của hệ chuyển mạch. - Phần 5 trình bày về tính đảm bảo ổn định của hệ chuyển mạch, nêu ra các ví dụ và điều kiện kiểm tra tính đảm bảo ổn định cho hệ phi tuyến cũng như hệ tuyến tính. Chương 2: Tính ổn định của một lớp các hệ chuyển mạch tuyến tính trên thang thời gian. Nội dung của chương gồm bốn phần: - Phần 1 chúng tôi trình bày phát biểu bài toán, trình bày các ký hiệu, trình bày thang thời gian . - Phần 2 trình bày định lý về tính đảm bảo ổn định mũ của hệ trên thang thời gian trong trường hợp các hệ con là ổn định, nêu ví dụ áp dụng và hình vẽ. - Phần 3 trình bày định lý về tính đảm bảo ổn định mũ của hệ trên thang thời gian trong trường hợp các hệ con liên tục là ổn định còn các hệ con rời rạc không ổn định, nêu ví dụ áp dụng và hình vẽ. - Phần 4 trình bày định lý về tính đảm bảo ổn định mũ của hệ trên thang thời gian trong trường hợp các hệ con liên tục không ổn định còn các hệ con rời rạc ổn định, nêu ví dụ áp dụng và hình vẽ.