Factorization of pretopological spaces and strong product graphs

The first part of the study discusses the basic concepts of the strong product of graphs including its Factorization Theorem through examples and illustrations. The second part of the paper focuses on definitions, axioms and concepts leading to the study of spaces specifically pretopological space....

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Lao, Angelyn R.
التنسيق: text
اللغة:English
منشور في: Animo Repository 2004
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/etd_masteral/3202
https://animorepository.dlsu.edu.ph/context/etd_masteral/article/10040/viewcontent/CDTG003738_P.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:The first part of the study discusses the basic concepts of the strong product of graphs including its Factorization Theorem through examples and illustrations. The second part of the paper focuses on definitions, axioms and concepts leading to the study of spaces specifically pretopological space. The third part of this research is an exposition of the state of the art theorem, Factorization of Pretopological Space. Lastly, this paper shows that any finite digraph T(X,E) representing a reflexive relation can always be associated with a finite pretopological space (X,N). Furthermore, a pretopological space (X,N) is factorizable if and only if the strong product of the associated graph is factorizable.