Remarks on condition numbers and optimally conditioned matrices
Matrix condition numbers are proved to be submultiplicative but neither subadditive nor superadditive, and the Frobenius and the default (based on the 2-norm) condition numbers are shown to be unitarily invariant. The equality of all the singular values of a square matrix is established as a necessa...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | text |
منشور في: |
Animo Repository
2005
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://animorepository.dlsu.edu.ph/faculty_research/12784 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | De La Salle University |
الملخص: | Matrix condition numbers are proved to be submultiplicative but neither subadditive nor superadditive, and the Frobenius and the default (based on the 2-norm) condition numbers are shown to be unitarily invariant. The equality of all the singular values of a square matrix is established as a necessary and sufficient condition for the matrix to be optimally conditioned under the 2-norm, making unitary, Hadamard and some diagonal and antidiagonal matrices possess unity condition numbers. |
---|