Vehicle classification using AKAZE and feature matching approach and artificial neural network

This research proposes a method in order to classify vehicles in a highly congested roads , a robust technique for vehicle classification with low computational power must be used. So, a proposed solution is to embed an AKAZE feature matching extraction which is ran in an artificial neural network w...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Bedruz, Rhen Anjerome R., Fernando, Arvin, Bandala, Argel A., Sybingco, Edwin, Dadios, Elmer P.
التنسيق: text
منشور في: Animo Repository 2019
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/faculty_research/1540
https://animorepository.dlsu.edu.ph/context/faculty_research/article/2539/type/native/viewcontent
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: De La Salle University
الوصف
الملخص:This research proposes a method in order to classify vehicles in a highly congested roads , a robust technique for vehicle classification with low computational power must be used. So, a proposed solution is to embed an AKAZE feature matching extraction which is ran in an artificial neural network will be used. AKAZE was used because it is faster than SIFT. The features extracted from the AKAZE algorithm will be grouped according to the type of vehicle where it was used and be placed to an Artificial Neural Network (ANN) for the training of the network itself. The results yielded good for real-time Vehicle Classification. © 2018 IEEE.