Zeta polynomials of type IV codes over rings of order four

We extend the definition of zeta function and zeta polynomial to codes defined over finite rings with respect to a specified weight function. Moreover, we also investigate the Riemann hypothesis analogue for Type IV codes over any of the rings Z4, F2 + uF2 and F2 + vF2. Although, for small lengths,...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Nocon, Ederlina G.
التنسيق: text
منشور في: Animo Repository 2009
الموضوعات:
الوصول للمادة أونلاين:https://animorepository.dlsu.edu.ph/faculty_research/2775
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:We extend the definition of zeta function and zeta polynomial to codes defined over finite rings with respect to a specified weight function. Moreover, we also investigate the Riemann hypothesis analogue for Type IV codes over any of the rings Z4, F2 + uF2 and F2 + vF2. Although, for small lengths, there are only a few actual Type IV codes over Z4, F2 + uF2 or F2 + vF2 that satisfy the Hamming distance upper bound 2(1 + ⌊ n/6 ⌋), we will show that zeta polynomials corresponding to these weight enumerators that meet this bound satisfy the Riemann hypothesis analogue property. © 2009 Faculty of Mathematics, Kyushu University.