Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness

Due to their low cost, lightweight, antifouling and anticorrosion properties, polymer heat exchangers (PHXs) are replacing metal heat exchangers in a variety of applications. Nowadays, 3D printing technology is gaining increasing attention to fabricate these PHXs. This study employs Fused Deposition...

Full description

Saved in:
Bibliographic Details
Main Authors: Ahmad, A., Abbas, A., Hussain, G., Al-Abbasi, O., Alkahtani, M., Altaf, K.
Format: Article
Published: Springer Science and Business Media Deutschland GmbH 2023
Online Access:http://scholars.utp.edu.my/id/eprint/37323/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168363624&doi=10.1007%2fs00170-023-12079-5&partnerID=40&md5=e7837d671eacbdee9c827f75c075085a
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universiti Teknologi Petronas
id oai:scholars.utp.edu.my:37323
record_format eprints
spelling oai:scholars.utp.edu.my:373232023-10-04T08:41:21Z http://scholars.utp.edu.my/id/eprint/37323/ Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness Ahmad, A. Abbas, A. Hussain, G. Al-Abbasi, O. Alkahtani, M. Altaf, K. Due to their low cost, lightweight, antifouling and anticorrosion properties, polymer heat exchangers (PHXs) are replacing metal heat exchangers in a variety of applications. Nowadays, 3D printing technology is gaining increasing attention to fabricate these PHXs. This study employs Fused Deposition Modeling (FDM), a popular 3D printing technique, to construct PHXs from ABS material (i.e., Acrylonitrile Butadiene Styrene) and investigates some of the important parameter effects on their heat transfer performance under varied operating conditions. Experiments were performed for the shell side flow rates varying from 0.6 to 3 L/min and tube side flow rates varying from 1.2 to 3.6 L/min. The overall heat transfer coefficient (U) ranged from 66 to 121 W/m2 K in these printed PHXs, thereby showing the effect of printing and operating conditions. The results showed that the printing temperature (PT) and tube wall thickness (WT) had a significant influence on the thermal performance of PHXs while the printing speed (PS) demonstrated a trivial effect. Apart from enhancing the thermal performance, higher printing temperature also resulted in lowering the dimensional variations. The roughness analysis of the tubes revealed that the PHXs with smooth surfaces interestingly had better heat transfer performance than tubes with rougher surfaces. Further, such smooth surfaces were realized with a high printing temperature. These findings conclude that higher roughness does not necessarily improve the thermal performance of layered PHXs, contrary to continuous structure HXs. Also, high printing temperature, small wall thickness, and low printing speed are conducive conditions to produce printed PHXs with greater thermal performance, and reduced roughness and dimensional variations. This study can act as a guideline for printing precise and high-performance PHXs. © 2023, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature. Springer Science and Business Media Deutschland GmbH 2023 Article NonPeerReviewed Ahmad, A. and Abbas, A. and Hussain, G. and Al-Abbasi, O. and Alkahtani, M. and Altaf, K. (2023) Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness. International Journal of Advanced Manufacturing Technology, 128 (7-8). pp. 3627-3647. ISSN 02683768 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168363624&doi=10.1007%2fs00170-023-12079-5&partnerID=40&md5=e7837d671eacbdee9c827f75c075085a 10.1007/s00170-023-12079-5 10.1007/s00170-023-12079-5 10.1007/s00170-023-12079-5
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Institutional Repository
url_provider http://eprints.utp.edu.my/
description Due to their low cost, lightweight, antifouling and anticorrosion properties, polymer heat exchangers (PHXs) are replacing metal heat exchangers in a variety of applications. Nowadays, 3D printing technology is gaining increasing attention to fabricate these PHXs. This study employs Fused Deposition Modeling (FDM), a popular 3D printing technique, to construct PHXs from ABS material (i.e., Acrylonitrile Butadiene Styrene) and investigates some of the important parameter effects on their heat transfer performance under varied operating conditions. Experiments were performed for the shell side flow rates varying from 0.6 to 3 L/min and tube side flow rates varying from 1.2 to 3.6 L/min. The overall heat transfer coefficient (U) ranged from 66 to 121 W/m2 K in these printed PHXs, thereby showing the effect of printing and operating conditions. The results showed that the printing temperature (PT) and tube wall thickness (WT) had a significant influence on the thermal performance of PHXs while the printing speed (PS) demonstrated a trivial effect. Apart from enhancing the thermal performance, higher printing temperature also resulted in lowering the dimensional variations. The roughness analysis of the tubes revealed that the PHXs with smooth surfaces interestingly had better heat transfer performance than tubes with rougher surfaces. Further, such smooth surfaces were realized with a high printing temperature. These findings conclude that higher roughness does not necessarily improve the thermal performance of layered PHXs, contrary to continuous structure HXs. Also, high printing temperature, small wall thickness, and low printing speed are conducive conditions to produce printed PHXs with greater thermal performance, and reduced roughness and dimensional variations. This study can act as a guideline for printing precise and high-performance PHXs. © 2023, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
format Article
author Ahmad, A.
Abbas, A.
Hussain, G.
Al-Abbasi, O.
Alkahtani, M.
Altaf, K.
spellingShingle Ahmad, A.
Abbas, A.
Hussain, G.
Al-Abbasi, O.
Alkahtani, M.
Altaf, K.
Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness
author_facet Ahmad, A.
Abbas, A.
Hussain, G.
Al-Abbasi, O.
Alkahtani, M.
Altaf, K.
author_sort Ahmad, A.
title Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness
title_short Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness
title_full Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness
title_fullStr Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness
title_full_unstemmed Performance evaluation of 3D printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness
title_sort performance evaluation of 3d printed polymer heat exchangers: influence of printing temperature, printing speed and wall thickness with consideration of surface roughness
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2023
url http://scholars.utp.edu.my/id/eprint/37323/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85168363624&doi=10.1007%2fs00170-023-12079-5&partnerID=40&md5=e7837d671eacbdee9c827f75c075085a
_version_ 1779441365540667392