Exploring Active Learning for Student Behavior Classification
Selection of high-quality ground truth data is a critical step for machine learning. Conventionally, a human-centered strategy is utilized to label the data. While this technique provides accurate annotations of task-specific behaviors, it is difficult, costly and error-prone. One method explored to...
محفوظ في:
المؤلفون الرئيسيون: | Dumdumaya, Cristina E, Paredes, Yance Vance M, Rodrigo, Ma. Mercedes T |
---|---|
التنسيق: | text |
منشور في: |
Archīum Ateneo
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://archium.ateneo.edu/discs-faculty-pubs/164 https://dl.acm.org/doi/abs/10.1145/3323771.3323807 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Network traffic classification based on deep learning
بواسطة: Cheng, Li
منشور في: (2023) -
Exploring the use of pre-trained transformer-based models and semi-supervised learning to build training sets for text classification
بواسطة: Te, Gian Marco I.
منشور في: (2022) -
DEEP VISUAL DOMAIN ADAPTATION IN THE WILD
بواسطة: HU DAPENG
منشور في: (2023) -
Optimal feature selection for learning-based algorithms for sentiment classification
بواسطة: Wang, Zhaoxia, وآخرون
منشور في: (2021) -
Regional Cultural Differences in How Students Customize Their Avatars in Technology-Enhanced Learning
بواسطة: Yarzebinski, Evelyn, وآخرون
منشور في: (2017)