Wigner Functions and Weyl Operators on the Euclidean Motion Group

The Wigner distribution function is one of the pillars of the phase space formulation of quantum mechanics. Its original formulation may be cast in terms of the unitary representations of the Weyl - Heisenberg group. Following the construction proposed by Wolf and coworkers in constructing the Wigne...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Natividad, Laarni B, Nable, Job A
التنسيق: text
منشور في: Archīum Ateneo 2020
الموضوعات:
الوصول للمادة أونلاين:https://archium.ateneo.edu/mathematics-faculty-pubs/57
https://projecteuclid.org/euclid.jgsp/1578193228
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Ateneo De Manila University
الوصف
الملخص:The Wigner distribution function is one of the pillars of the phase space formulation of quantum mechanics. Its original formulation may be cast in terms of the unitary representations of the Weyl - Heisenberg group. Following the construction proposed by Wolf and coworkers in constructing the Wigner functions for general Lie groups using the irreducible unitary representations of the groups, we develop here the Wigner functions and Weyl operators on the Euclidean motion group of rank three. We give complete derivations and proofs of their important properties.