On Relative Difference Sets in Dihedral Groups

In this paper, we study extensions of trivial difference sets in dihedral groups. Such relative difference sets have parameters of the form (uλ,u,uλ, λ) or (uλ+2,u, uλ+1, λ) and are called semiregular or affine type, respectively. We show that there exists no nontrivial relative difference set of af...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Garciano, Agnes, Hiramine, Yutaka, Yokonuma, Takeo
التنسيق: text
منشور في: Archīum Ateneo 2006
الموضوعات:
الوصول للمادة أونلاين:https://archium.ateneo.edu/mathematics-faculty-pubs/90
https://link.springer.com/article/10.1007%2Fs10623-005-2399-z
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Ateneo De Manila University
الوصف
الملخص:In this paper, we study extensions of trivial difference sets in dihedral groups. Such relative difference sets have parameters of the form (uλ,u,uλ, λ) or (uλ+2,u, uλ+1, λ) and are called semiregular or affine type, respectively. We show that there exists no nontrivial relative difference set of affine type in any dihedral group. We also show a connection between semiregular relative difference sets in dihedral groups and Menon–Hadamard difference sets. In the last section of the paper, we consider (m, u, k, λ) difference sets of general type in a dihedral group relative to a non-normal subgroup. In particular, we show that if a dihedral group contains such a difference set, then m is neither a prime power nor product of two distinct primes.