On eigenvalue bounds for the finite-state birth-death process intensity matrix
The paper sets forth a novel eigenvalue interlacing property across the finite-state birth-death process intensity matrix and two clearly identified submatrices as an extension of Cauchy’s interlace theorem for Hermitian matrix eigenvalues. A supplemental proof involving an examination of probabilit...
Saved in:
Main Authors: | , , |
---|---|
格式: | text |
出版: |
Archīum Ateneo
2020
|
主題: | |
在線閱讀: | https://archium.ateneo.edu/mathematics-faculty-pubs/134 https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1133&context=mathematics-faculty-pubs |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
成為第一個發表評論!