On the Frequency Module of the Hull of a Primitive Substitution Tiling

Understanding the properties of tilings is of increasing relevance to the study of aperiodic tilings and tiling spaces. This work considers the statistical properties of the hull of a primitive substitution tiling, where the hull is the family of all substitution tilings with respect to the substitu...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Say-Awen, April Lynne D, Frettlöh, Dirk, De Las Peñas, Ma. Louise Antonette N
التنسيق: text
منشور في: Archīum Ateneo 2022
الموضوعات:
الوصول للمادة أونلاين:https://archium.ateneo.edu/mathematics-faculty-pubs/185
https://archium.ateneo.edu/cgi/viewcontent.cgi?article=1190&context=mathematics-faculty-pubs
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Ateneo De Manila University
الوصف
الملخص:Understanding the properties of tilings is of increasing relevance to the study of aperiodic tilings and tiling spaces. This work considers the statistical properties of the hull of a primitive substitution tiling, where the hull is the family of all substitution tilings with respect to the substitution. A method is presented on how to arrive at the frequency module of the hull of a primitive substitution tiling (the minimal -module, where is the set of integers) containing the absolute frequency of each of its patches. The method involves deriving the tiling's edge types and vertex stars; in the process, a new substitution is introduced on a reconstructed set of prototiles.