Mathematical Modelling for COVID-19 Dynamics with Vaccination Class

We develop a six-compartment differential equation model for the transmission of COVID-19 by dividing the human population into susceptible; vaccinated; exposed; infectious; confirmed; and recovered. We use the basic reproduction number R0 to determine when the disease will die out and when it will...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Lagura, Maria Czarina T, David, Roden Jason, De Lara-Tuprio, Elvira P
التنسيق: text
منشور في: Archīum Ateneo 2022
الموضوعات:
الوصول للمادة أونلاين:https://archium.ateneo.edu/mathematics-faculty-pubs/229
https://doi.org/10.1007/978-3-031-04028-3_23
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Ateneo De Manila University
الوصف
الملخص:We develop a six-compartment differential equation model for the transmission of COVID-19 by dividing the human population into susceptible; vaccinated; exposed; infectious; confirmed; and recovered. We use the basic reproduction number R0 to determine when the disease will die out and when it will stay in the community. This is done by showing that when R0 < 1; then the disease-free equilibrium solution is globally asymptotically stable; and when R0 > 1; the endemic equilibrium is globally asymptotically stable. Finally; we use numerical solutions to confirm the results of our stability analysis.