Weighted online sequential extreme learning machine for class imbalance learning
Most of the existing sequential learning methods for class imbalance learn data in chunks. In this paper, we propose a weighted online sequential extreme learning machine (WOS-ELM) algorithm for class imbalance learning (CIL). WOS-ELM is a general online learning method that alleviates the class imb...
Saved in:
Main Authors: | Lin, Zhiping, Mirza, Bilal., Toh, Kar-Ann. |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/101064 http://hdl.handle.net/10220/16690 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Sequential extreme learning machines for class imbalance and concept drift
由: Mirza Bilal
出版: (2015) -
Weighted extreme learning machine for imbalance learning
由: Zong, Weiwei, et al.
出版: (2013) -
Weighted Extreme Learning Machine for Dengue Detection with Class-imbalance Classification
由: Wanchaloem Nadda, et al.
出版: (2020) -
Kernel based online learning for imbalance multiclass classification
由: Ding, Shuya, et al.
出版: (2020) -
Machine learning based traffic demand estimation
由: Wang, Xinxu
出版: (2022)